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A Bayesian Mixture Approach to Modeling Spatial
Activation Patterns in Multisite fMRI Data
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Abstract—We propose a probabilistic model for analyzing spa-
tial activation patterns in multiple functional magnetic resonance
imaging (fMRI) activation images such as repeated observations
on an individual or images from different individuals in a clinical
study. Instead of taking the traditional approach of voxel-by-voxel
analysis, we directly model the shape of activation patterns by rep-
resenting each activation cluster in an image as a Gaussian-shaped
surface. We assume that there is an unknown true template pat-
tern and that each observed image is a noisy realization of this
template. We model an individual image using a mixture of ex-
perts model with each component representing a spatial activation
cluster. Taking a nonparametric Bayesian approach, we use a hi-
erarchical Dirichlet process to extract common activation clusters
from multiple images and estimate the number of such clusters au-
tomatically. We further extend the model by adding random ef-
fects to the shape parameters to allow for image-specific variation
in the activation patterns. Using a Bayesian framework, we learn
the shape parameters for both image-level activation patterns and
the template for the set of images by sampling from the posterior
distribution of the parameters. We demonstrate our model on a
dataset collected in a large multisite fMRI study.

Index Terms—Brain activation, functional magnetic resonance
imaging (fMRI), hierarchical model.

I. INTRODUCTION

F UNCTIONAL magnetic resonance imaging (fMRI) is
widely used to study how the brain functions in response

to external stimuli. In each run of an fMRI scan, data are
collected as a time-series of 3-D voxel images while a subject
is responding to external stimuli or performing a specific
cognitive task. The temporal aspect of the time-series data
for a run is often summarized as a -map, a 3-D image of
coefficients that estimate the amount of activation at each voxel.
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An experiment often comprises multiple runs within a visit, and
may also include multiple visits, and multiple subjects. There
is also increasing interest in analyzing data taken at multiple
different fMRI sites (machines) [1], [2].

In a typical approach to analysis of fMRI data, the activation
maps are analyzed using voxel-by-voxel hypothesis testing. The
set of voxels that are found to be statistically significant (e.g.,
based on -statistics) are then used to define the activated re-
gion in the brain [3]. This approach assumes that the activation
at each voxel is independent of the activation in neighboring
voxels, and ignores the spatial information in the overall ac-
tivation pattern. While spatial statistics that are derived from
multiple neighboring voxels have been used to test significance
of activations [4], [5], more recent approaches propose to di-
rectly take into account the spatial information in the activa-
tion pattern by modeling the shape of local activation regions
explicitly. For example, Hartvig [6] represented the activation
surface in fMRI as a parametric function consisting of a super-
position of Gaussian-shaped bumps and a constant background
level, and used a stochastic geometry model to find the number
of bumps automatically. Penny and Friston [7] proposed a mix-
ture model with each mixture component representing a local
activation cluster. In earlier work we proposed a response sur-
face model that represents an activation pattern as a superposi-
tion of Gaussian shaped parametric surfaces and demonstrated
how the model could be used to characterize and quantify inter-
machine variability in multisite fMRI studies [8].

The methods discussed above for modeling spatial activa-
tion shape in fMRI data can handle only a single image. The
problem of extracting spatial patterns from multiple images has
not been addressed, even though detection and characteriza-
tion of such patterns can in principle provide richer information
(than voxel-level information) about cognitive activity and its
variation across individuals, across time, and across machines.
Previous approaches for spatial modeling in multiple images
were based on first extracting spatial statistics from individual
images, finding correspondences of those statistics across mul-
tiple images, and finding brain regions with significant activa-
tions in terms of the statistics matched across images [9]–[13].
Although the spatial statistics were extracted from multiple cor-
related voxels in the neighborhood of an activation region, their
representation did not explicitly capture the activation shape in-
formation, and the overall approach did not provide a mecha-
nism to systematically learn the variability across different im-
ages. A Bayesian hierarchial model has been proposed to ac-
count for spatial variability in activation across multiple images
[14], but the spatial correlation was modeled through a covari-
ance parameter between each pair of voxels, instead of using an
explicit representation of activation shapes.
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Fig. 1. Illustration of image-level variations from the template model.

In this paper, we propose a new statistical approach that can
characterize spatial fMRI activation patterns across multiple im-
ages1, where the multiple images could be repeated observa-
tions on an individual (as in a recent fMRI reliability study [1],
[16]) or could be different individuals from a group in a clin-
ical study. We model each activation cluster in an image as a
Gaussian-shaped surface with parameters for 1) its height or
peak value, representing the amount of activation, 2) the location
of the cluster, modeling the center of activation in voxel-space,
and 3) the width of the cluster. Given multiple activation im-
ages, we extract common activation clusters across images and
learn the image-specific variation in the activation shape in each
image. The general idea is illustrated in Fig. 1. At the bottom of
Fig. 1 are fMRI activation images in the right motor region of
the brain over four runs from the same subject performing a sen-
sorimotor task. There are three activation clusters that appear in
all or some of the four images, with image-specific variation in
intensity and location. These types of variation are common in
multiimage fMRI experiments, due to a variety of factors such
as head motion and variation in the physiological and cognitive
states of the subject. The underlying assumption in the model
that we propose in this paper is that there is an unknown true
activation pattern (as shown at the top of Fig. 1) in a subject’s
brain given a particular stimulus, and that the activation patterns
in the observed images (as shown in the middle row of Fig. 1)
are noisy realizations of this true activation template, with vari-
ability in the activation patterns due to various sources. Our goal
is to build a probabilistic model that infers both the overall tem-
plate and image-specific activation patterns given multiple ob-
served images.

We base our probabilistic model for multiple images on a
mixture of experts model with a Dirichlet process prior for a
single image [8]. We model spatial activation patterns in a single
activation image as a mixture of experts [17]–[19] with a con-
stant background component and one or more activation com-
ponents. Each local activation cluster is modeled using a para-
metric surface model with parameters for its peak value, the lo-
cation of the cluster, and the width. The problem of estimating
the number of such activation components is handled by com-
bining this mixture of experts model with a Dirichlet process
prior. A Dirichlet process prior is a nonparametric Bayesian
prior that has been shown to be useful in learning the number
of components in a mixture model from data without having to
specify it a priori [20].

1This paper extends results that were presented earlier in preliminary form as
a short conference paper [15].

To model multiple activation images in a single probabilistic
framework, we link the common components in multiple
single-image models by introducing a hierarchy in the Dirichlet
process prior. The hierarchical Dirichlet process is a model
developed for handling multiple related mixture models with
shared mixture components [21]. At the top of the hierarchy
is a template mixture model with a set of components that
are common across bottom-level mixture models. All of the
bottom-level mixture models have components with the same
fixed component parameters but are allowed to have their own
mixing proportions. When we apply the hierarchical Dirichlet
process to the specific problem of fMRI activation modeling,
we can simultaneously infer both the top-level template and the
image-level activation patterns from observed images, as well
as the number of components at each level.

The hierarchical Dirichlet process assumes that the mixture
component parameters (e.g., the intensities and locations of the
Gaussian-shaped surface models we wish to use for fMRI ac-
tivation modeling) are fixed across images. However, as can
be seen in Fig. 1, there is image-specific local variation in the
shape of activation clusters. In this paper, we introduce addi-
tional flexibility to the hierarchical Dirichlet process as follows:
each image is allowed to have its own shape parameter, with a
common prior distribution across images that has a mean shape
in the activation template, and with a variance controlling the
amount of image-specific random variation. This image-spe-
cific random variation added to the template shape parameters
is sometimes referred to as random effects in the statistical lit-
erature [22]. By introducing random effects to the component
parameters in the hierarchical Dirichlet process and estimating
the random effects parameters, we can learn both the template
activation shape and the image-specific random variation. In our
experiments using data from a large multisite fMRI study, we
demonstrate that the hierarchical Dirichlet process with random
effects leads to systematically better results when compared to
alternative approaches.

The rest of the paper is organized as follows. In Section II, we
introduce a mixture of experts model with a Dirichlet process
prior for a single image. In Section III, we propose a model
for multiple images that uses a hierarchical Dirichlet process.
In Section IV, we further extend this model by introducing
random effects to the shape parameters in activation compo-
nents. Section V provides a demonstration of the proposed
models using multisite fMRI data. We conclude in Section VI
with a brief discussion of future work.

II. MIXTURE OF EXPERTS MODEL WITH DIRICHLET PROCESS

PRIOR FOR A SINGLE IMAGE

We begin by discussing the mixture of experts model for ac-
tivation patterns in a single image, which we then generalize to
multiple images in later sections.

A. The Model

We develop the model for the case of 2-D slices of
maps—the 3-D case can be derived as an extension of the 2-D
case, but is not pursued in this paper. We assume that the
values (where is the number of voxels)
are conditionally independent of each other given the voxel
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position and the model parameters. We then
model the activation at voxel with a mixture of experts
model [18], [23]

(1)

where is a set of component
labels for the background and the activation components
(the ’s), is the component label for the th voxel, and

represents the component
parameters. The and are parameters for the background
component, and the ’s and are used to model activation
components as described below.

The first term on the right-hand side of (1) defines the spatial
model or expert for a given mixture component. We model the
activation component as a normal distribution having a mean
that is a Gaussian-shaped surface centered at with width

and height

(2)

where , and a variance . The back-
ground component is modeled as a normal distribution with
mean

where , and variance .
The second term in (1) is known as a gate function in the

mixture of experts framework—it decides which model should
be used to make a prediction for the activation level at position

. Using Bayes’ rule we write this term as

(3)

where is a class prior probability [19], [24].
is defined as follows. For the activation components

with , is a normal density with mean
and covariance . The and are shared with the
Gaussian surface model in (2). This implies that the probability
of activating the th model or expert is highest at the center of
the activation and gradually decays as moves away from the
center. for the background component is modeled
as having a uniform distribution of for all positions in
the brain, where is the number of voxels in the image. If
is not close to the center of any activations, the gate function
selects the background expert for the voxel. The denominator
of (3) provides an expression for the distribution of the input
space as .

Combining the pieces results in a full generative-model spec-
ification [18], [24]

(4)

The second line in the above equation follows from (1) and the
third line is obtained by applying (3).

Using a Bayesian modeling framework, we place prior dis-
tributions on the parameters as follows. We let the center of ac-
tivation be a priori uniformly distributed inside or a half
voxel away from the brain region in the image. We let the height
parameter be a priori uniformly distributed between 0 and
a predefined value . The is set to a value about
15%–20% higher than the maximum value in the image. For
the width parameter , we use a half-normal distribution with
mean 0 and variance as a prior for the variance terms in
and place a uniform prior over [ , 0.5] on the correlation
coefficients. This ensures that always stays positive-def-
inite. A normal distribution is used as a prior on
the background mean . The variances and are given
half-normal prior distributions with mean 0 and variance
and , respectively.

B. Dirichlet Process as a Prior

A practical issue with the finite mixture model approach is
how to determine the number of components in the model [25],
[26]. Nonparametric Bayesian approaches address this problem
by assuming an infinite number of components a priori and then
letting the data determine how many components exist in the
posterior. In particular, Dirichlet processes are well-suited as
a nonparametric Bayesian prior for mixture models [20], [27].
Using this approach, we can infer a posterior distribution over
the number of components given the observed data.

A Dirichlet process [28] is a measure over probability mea-
sures denoted as with a concentration parameter

and a base distribution as its two parameters. The
Dirichlet process is most easily described by associating a com-
ponent parameter vector with each voxel . We reserve
the notation for a distinct component parameter; several ’s
may be equal to the same . We place a Dirichlet process prior

on the parameters and as fol-
lows:

(5)

where itself is a discrete probability measure in the form of

generated from . The prior has an infinite number
of components, but conditioned on the observed data, only a
finite number of components exist in the posterior. We desig-
nate the first component as the only background component. All
of the remaining components are activation components, and
the model can have an arbitrary number of such components.
A stick-breaking representation describes the construction of
from [29] as follows:

(6)

where is constructed from a stick-breaking process
as described below [29]

(7)
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We can understand the process of generating ’s via (7) as
breaking a unit-length stick sequentially as follows. We sample

from , break the stick at , and set .
We take the remainder of the stick of length , select
the second break-point by sampling from , and
set , and so on. It is straightforward to show
that ’s generated using (7) sum to 1. The component param-
eter associated with each is drawn from the base dis-
tribution , which is made up of the prior distributions de-
fined in Section II-A for the activation component parameters

and the background component parameter .
We use a distribution as a prior for the concen-
tration parameter .

If we integrate out from the model described in (5), it can
be shown that the labels (the ’s) have the following clustering
property [30]:

(8)

where represents the number of variables, , that
are assigned to component , and is the number of compo-
nents that have one or more voxels in associated
with them. The probability that is assigned to a new compo-
nent is proportional to . Note that the component with more
observations already assigned to it has a higher probability of
attracting the next observation. It can be shown that
are exchangeable under (8) [31].

C. Markov Chain Monte Carlo (MCMC) Sampling for
Learning

Because of the nonlinearity of the model and nonconju-
gacy in the base distribution of the Dirichlet process prior,
we rely on MCMC simulation methods to obtain samples
from the posterior probability distribution of the parameters
given the data. In a Bayesian mixture model framework it
is common to augment the unknown parameters with the
unknown component labels for observations and consider the
joint posterior distribution where , and
represent a collection of ’s, ’s and ’s for
and, .
During each sampling iteration the component labels and
parameters are sampled alternately.

1) Sampling Component Labels: For each we sample
from its conditional posterior given as

(9)

where the first two terms on the right-hand side of the equation
are data likelihoods, and the last term is given by (8), acting as
if is the last item in a sequence like (8) that contains all
voxels.

Because of the nonconjugacy of the base distribution in the
Dirichlet process prior, it is not possible to analytically compute
the conditional posterior in (9), so we use a sampling method
based on the Metropolis–Hastings algorithm for Dirichlet
process mixtures with a nonconjugate prior [31]. We briefly
describe the sampling algorithm as follows. If for some

(i.e., is a nonsingleton), we propose to reassign to
a newly created component. If for all (i.e., is
a singleton), we propose to reassign to one of the existing
components with some other data points assigned to it. We ac-
cept the proposal based on the Metropolis–Hastings acceptance
rule. To improve the mixing in the sampling algorithm, we use
an additional partial Gibbs sampling step for nonsingletons
[31].

As we sample from the conditional posterior in (9), the ’s
are associated with a finite number of components. Note that the
number of components represented by the ’s can change from
one sampling iteration to the next. New components can get gen-
erated, and existing components can disappear if they become
empty with no ’s assigned to them. We are interested only
in which observations are associated with the same component,
regardless of the ordering of the components in the labeling
scheme. From a Bayesian viewpoint, at the end of the sampling
iterations, we obtain a posterior distribution of the number of
components as a histogram of the sampled values over itera-
tions. If we wish to report one fixed value for the number of
components, we can (for example) select the sample with the
highest posterior probability and use the associated assignments
and components.

2) Sampling Component Parameters: Given the compo-
nent labels , we use a Gibbs sampling algorithm with some
Metropolis steps to sample the component parameters. For the
background mean and the concentration parameter , it is
possible to use the full conditional distribution of the param-
eter given all others. For the remaining parameters, we use a
Metropolis algorithm with Gaussian random walk proposal
distributions.

3) Initialization Methods: At the start of the MCMC sam-
pling the model is initialized to one background component and
one or more activation components. To initialize the model, we
use a heuristic algorithm to find candidate voxels for local ac-
tivation centers and assign a mixture component to each of the
candidates. The heuristic procedure is as follows. To find candi-
date voxels, we take all of the positive voxels in an image, and
repeatedly select the largest voxel among the voxels that have
not been chosen and are at least several voxels apart from the
previously selected voxels until there are no voxels left. The lo-
cation and height parameters of the component are set to the
position and the -value of the candidate voxel respectively.

III. HIERARCHICAL DIRICHLET PROCESSES FOR

MULTIPLE FMRI IMAGES

To generalize the method of Section II so that it can learn
common activation patterns from multiple images, we model
each image as a mixture of experts model as described in
Section II and let the components be shared among images by
combining image-level models using a hierarchical Dirichlet
process. A hierarchical Dirichlet process combines Dirichlet
processes in a hierarchical manner to model multiple related
mixture models with shared mixture components but different
mixing proportions [21].

A. The Model

Assume that we have images and that each image is mod-
eled with a mixture of experts with a Dirichlet process prior as in
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Section II-A. To allow for the sharing of components across im-
ages, we combine Dirichlet processes hierarchically and model
the base distribution as coming from an upper-level Dirichlet
process . Let be the th voxel ( ) in
image ( ). Then the complete model for a hierar-
chical Dirichlet process is given as

(10)

where is a base distribution for the component parameters as
defined in Section II, is the component parameter associated
with the th voxel in the th image, and and are concentra-
tion parameters for Dirichlet processes. The in the above
equation takes the following form:

(11)

where ’s are generated from and ’s are distinct
values in ’s representing distinct component parameters sam-
pled from the base distribution . The ’s are given as

(12)

where ’s are mixing proportions for the mixture model of
the th image. It is important to notice that comes from the
Dirichlet process with a discrete distribution as its base dis-
tribution. Thus, the components represented in the ’s are the
ones present in , forcing the images to have components
with the same parameters.

We can derive a similar clustering property to (8) for hierar-
chical Dirichlet processes at each level of the hierarchy. At the
bottom level, voxels for are assigned to one
of the local clusters within image . When we integrate out

in (10), we obtain

(13)
where represents the label assignment of to one of the
local clusters, is all of the ’s in the th image excluding

, and is the number of voxels assigned to the th local
cluster excluding .

At the top-level Dirichlet process, the local clusters are as-
signed to one of the global clusters with parameters . This
assignment can be seen by integrating out in (10)

(14)
where maps the th local cluster in image to one of the
global clusters shared by all of the images, represents the
label assignments for all of the local clusters across images
excluding , is the number of local clusters in image

assigned to the th global cluster excluding , and is the
number of local clusters assigned to the th global cluster.

According to (13) the probability that a new local cluster is
generated within image is proportional to . This new cluster
is generated according to (14). If a new component is selected
in (14) the corresponding component parameter is drawn from
the base distribution .

Notice that more than one local cluster in image can be
linked to the same global cluster. It is the assignment of voxels
to one of the global clusters via local cluster labels that is of
interest.

B. MCMC Sampling for Learning

To learn the model from a set of activation images we use an
MCMC sampling algorithm to sample from the posterior distri-
bution of the component labels and unknown parameters given
a set of images. The quantities of interest are the local cluster
labels ’s, the global cluster labels ’s, and the parameters

. We
sample each of these in turn from its conditional posterior dis-
tribution in each iteration of Gibbs sampling. See Appendix A
for more details.

IV. HIERARCHICAL DIRICHLET PROCESSES WITH RANDOM

EFFECTS FOR MULTIPLE FMRI IMAGES

To achieve the flexibility required to model the type of image-
specific variation illustrated in Fig. 1, we further extend the
model described in Section III by introducing random effects
on component parameters.

A. The Model

We take the model in Section III-A and let the th image have
its own component parameters ’s, ’s, ’s, and ’s
as follows. Let be the label assignment of the th voxel in the
th image to one of the global clusters through ’s and ’s.

Then, the observation in the th image is modeled as

(15)

and if is a background component, the observation
in the th image is modeled as

The image-specific parameters ’s and ’s, for each of the
activation components, and the ’s are modeled as coming

from a common prior distribution given by

(16)

where the ’s and ’s define the unknown template acti-
vation shape for the th component, and defines the overall
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background mean across images. The variance parameters ,
, and represent the amount of variation in parameters
, , and for each component across images. Thus, the

’s, ’s, and can be viewed as defining templates, and the
’s, ’s, and ’s as noisy observations of the template for

image with variances ’s, ’s, and , respectively. The
width parameters ’s are modeled as coming from a prior of a
half-normal distribution for the variance elements and a uniform
distribution over [ , 0.5] for the correlations. We do not con-
strain ’s across images through a population-level distribu-
tion. For ’s and in (16), we use half-normal distributions
with mean 0 and predefined values for variances as priors. For

’s, we set the covariance elements to 0, assuming that
and in are independent of each other, and
use a half-normal prior on the variance elements.

We extend the clustering properties in (13) and (14) for hierar-
chical Dirichlet processes to describe the generative process of
the model described above. The only difference is that if a global
cluster selected using (14) (for the assignment of ) is a compo-
nent that has not been used in the th image, the image-specific
shape parameters for the th image needs to be generated from
its prior.

B. Learning with MCMC Sampling

For inference we use an MCMC sampling scheme that is
based on the clustering property of the model described in
the previous section. In each iteration of the sampling algo-
rithm we alternately sample labels ,

and parameters

from their conditional posterior distributions. Details are given
in Appendix B.

C. Demonstration of the Model on Simulated Data

We demonstrate the performance of the hierarchical Dirichlet
process with random effects on simulated data, and compare the
results with what we obtain from a simple thresholding scheme
for a voxel-wise analysis. We assume a template activation pat-
tern of three activation clusters of the same intensity located at

, , and in a 20 25 region,
and generate 10 observed images from this template, using 0.3,
0.8, and 1.2 as the variance element of ’s, and 0.3, 0.2, and
0.1 as ’s for , 2, 3. We further assume that the first
three observed images contain all of the three activation clus-
ters, the next three images contain two clusters, and 2,
and the remaining four images have a different subset of clus-
ters, and 3. Given the true parameters, the intensity value
at each voxel of an image is determined by computing the inten-
sity level for each of the activation and background components
and taking the maximum value. The corresponding component
with the maximum value is considered as the true cluster label
for the voxel. Finally, we add noise generated from
and to the intensity level of each voxel.

Illustrations demonstrating the fit of the hierarchical Dirichlet
process with random effects to two sets of sample images are

provided in Fig. 2(a) and (b). Fig. 2(a) shows the single MCMC
draw with the highest posterior probability when the model is
fit to data with low activation intensities and high noise levels
( and ). Fig. 2(b) shows the
single MCMC draw with the highest posterior probability when
the model is fit to data with high activation intensities and low
noise levels ( and ). The left-most
panel in Fig. 2(a) and (b) shows the true locations of the tem-
plate activation clusters as ’s and the region within one stan-
dard deviation as measured by the estimated ’s is indicated
by ellipses around each location. In the remaining panels of
Fig. 2(a) and (b), we show the estimated image-specific acti-
vation clusters for seven (out of the ten) images in the image
set as ellipses marking the region within one standard devia-
tions (as measured by the estimated ’s) of the image-spe-
cific location; the ellipses are overlaid on the images. In the
high-noise case, Fig. 2(a), our model is able to determine the
approximate locations of the two out of the three true activa-
tion components by combining the information across multiple
images, even when the activation areas are not clear from indi-
vidual images. When there is clear evidence for activation with
low noise as in Fig. 2(b), our model is able to correctly identify
the three true activation clusters.

In order to systematically compare the performance of our
method for detecting activated voxels and a benchmark thresh-
holding approach, we simulate 20 sets of 10 images (each set
of 10 generated as described above), and plot receiver operating
characteristic (ROC) curves averaged over the 20 datasets. To
obtain an ROC curve from the hierarchical Dirichlet process
with random effects, we fit the model to each dataset, and use
the following scheme to rank the voxels. Using the posterior
samples for cluster labels ’s from the MCMC sampling al-
gorithm, we estimate the posterior probability of each voxel be-
longing to either background component or any of the activation
components. We aggregate these probabilities so that we obtain
for each voxel a single posterior probability of that voxel being
part of an activation cluster (without regard to which cluster).
We rank the voxels according these posterior probabilities of be-
longing to any of the activation components, compare the sorted
list with the set of truly activated voxels, and plot type I errors
and powers as an ROC curve. For the thresholding method, we
simply rank the voxels according to their intensities to obtain
ROC curves.

We compute ROC curves for varying values of the param-
eter defining activation heights ( , 1.5, 2.0) in Fig. 2(c)
with the width fixed ( ), and then for varying values
of the parameter defining activation widths ( )
in Fig. 2(d) with the height fixed ( ). The three sets of
ROC curves from the left to the right in Fig. 2(c) and (d) corre-
spond to different levels of noise, , 0.6, and
1.0, respectively. The results show that across different values
of shape parameters and noise levels our method outperforms
the thresholding method that treats voxels independently of each
other.

V. EXPERIMENTS

Using data from a multisite fMRI study we experimentally
compare the different models described in Sections II–IV,
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Fig. 2. Results on simulated data comparing the hierarchical Dirichlet process with random effects and a thresholding approach. The activation clusters estimated
from the hierarchical Dirichlet process with random effects are shown for datasets simulated with (a) low activation intensities with high noise level (� � ���

and � � � � ���), and (b) high activation intensities with low noise level (� � ��� and � � � � ���). The results are based on the single MCMC
sample with the highest posterior probability. The left-most images in Panels (a) and (b) show the true locations of the template activation clusters as ��’s, and
estimated regions within one standard deviation (as measured by the��� ’s) as ellipses. In the next seven images in Panels (a) and (b), the estimated image-specific
activation clusters are overlaid over the raw images as ellipses of width one standard deviations (as estimated by the � ’s). ROC curves for detecting the true
activation voxels averaged over 20 simulated datasets are shown for (c) varying heights � ’s (with fixed � ), and (d) varying widths, the variance elements
of � ’s, of the activation clusters (for fixed � ). In Panels (c) and (d), the three sets of ROC curves from the left to the right correspond to the noise levels
� � � � ���, 0.6, and 1.0, respectively.

namely, the mixture of experts model with a Dirichlet process
prior, the hierarchical Dirichlet process, and the hierarchical
Dirichlet process with random effects.

A. Multisite Data Collection and Preprocessing

FMRI scans for the same five control subjects were collected
from 10 different scanners as part of a multisite study of func-
tional brain images, known as FIRST BIRN or fBIRN (Func-
tional Imaging Research on Schizophrenia Test-bed Biomedical
Informatics Research Network) [1], [32]. For each subject there
were two visits to each site, and at each visit fMRI data were
collected for four runs of a sensorimotor task and two runs of
each of breathholding, resting, and cognitive recognition tasks,
using a common protocol. The primary goal of this study is
to better understand the variability of fMRI response patterns
across runs, visits, scanners (sites) and subjects, so that future
data collected across sites and subjects can be analyzed collec-
tively and consistently (e.g., [16]). In the experiments below we
use the data from the sensorimotor task, and focus on activation
within specific regions of interest that are relevant to this task
such as the left and right precentral gyri, the left and right supe-
rior temporal gyri, and the left and right occipital lobes. During

the sensorimotor task subjects were presented with auditory and
visual stimuli and were asked to tap fingers on each hand period-
ically. The brain regions analyzed correspond to areas expected
to reflect visual, auditory, and motor activity.

Each run of the sensorimotor task produces a series of 85
scans that can be thought of as a time-series of voxel images.
The set of scans for each run is preprocessed in a standard
manner using SPM99 [33] with the default settings. The pre-
processing steps include correction of head motion, normaliza-
tion to a common brain shape, and spatial smoothing. Using the
motion correction algorithm as implemented in SPM99 all of
the four runs in each visit are realigned to the first image of the
first run. The head motion correction is followed by a co-reg-
istration and normalization step that transforms the images into
a standard space defined by the SPM eco-planar imaging (EPI)
canonical template (Montreal Neurological Institute template,
or MNI template). The normalized images are interpolated using
bilinear interpolation and resliced to 2 2 2 mm voxels be-
fore being smoothed with an 8 mm full-width at half-maximum
(FWHM) 3-D Gaussian kernel.

A general linear model is then fit to the time-series data for
each voxel, yielding a regression coefficient that estimates the
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amount of activation at each voxel. The design matrix used in the
analysis includes the on/off timing of the sensorimotor stimuli
measured as a boxcar convolved with the canonical hemody-
namic response function. A -map is a voxel image of the re-
gression coefficients ( ’s) that summarizes the activation across
time as an activation map. Binary masks for regions of interest
from the normalized atlas were then used to extract the values
for all voxels within a region. These values serve as our data.
The approach can be easily applied to other summary measures,
e.g., t-statistics. We focus here on detecting areas of increased
activation during the sensorimotor task relative to rest periods;
the models outlined above could be modified to address ex-
pected decreases in activation as well.

B. Experimental Setup

In this section, we describe the setup for our application of the
models to the FBIRN data, including specification of the prior
distributions for the models used in our experiments and initial-
ization methods for our algorithms. We selected a 2-D cross-sec-
tion from each of the six regions of interest to fit the models. In
all of the experiments we ran the sampling algorithm for 4000
iterations and used the samples over the last 3000 iterations after
1000 burn-in iterations to present the results. After a few initial
runs of the sampling algorithm, we found that 4000 iterations
with 1000 burn-in iterations were sufficient for convergence.

1) Single-Image Models: We set the prior distributions for
the model as follows. We a priori assumed a small value of
the concentration paramater that tends to encourage a rela-
tively small number of components, and hence set the prior for

to in order to keep the mean of the gamma rela-
tively small at 0.1. For the activation components, the priors for
the width parameters were set to a half-normal distribution
with mean 0 and variance 100. We used a large variance in the
half-normal prior to make the prior nearly uninformative within
a fairly large range of values. We assumed an uninformative
prior for the height parameters , and used a uniform distri-
bution over with set to a value 25% larger than
the maximum intensity in the image. The initialization scheme
described in Section II-C was used to initialize the model.

2) Multiple-Image Models: For our experiments with the two
hierarchical Dirichlet process models (with and without random
effects), we analyzed a single subject at a time, using a collec-
tion of 80 images (10 sites 8 runs per site) of each region of
interest for the given subject. Thus, the model has three layers of
Dirichlet processes, corresponding to (from the top) the global
template, the site-specific template, and the image-specific (or
run-specific) activation model. At the bottom level of the hier-
archy are the eight images from the eight runs at a specific site.
In the previous analysis of the same dataset [16], it was shown
that the visit variability is much smaller than the run variability.
Thus, in our analysis, we combined the four runs from each of
the two visits, and modeled them as if they were eight runs from
one visit, although a simple extension of our model with an addi-
tion of another hierarchy would allow us to explicitly model the
visit variability. The model with random effects had ’s and

’s as global templates, and ’s and ’s as site-specific

parameters for the th site, modeled as coming from the distribu-
tions and , respectively. The activa-
tion component parameters ’s and ’s for an individual
image of the th run in the th site were modeled as coming
from the distributions and , re-
spectively. The model without random effects had ’s and

’s in a global template fixed across all of the images.
In all of our experiments, the prior distributions were set as

follows. The priors for the concentration parameters at each of
the three levels of Dirichlet processes were set, from the top
level, to , , and , respectively. For the ac-
tivation components, the prior for the width parameters and the
height parameters in the global template were set in the same
manner as in the single-image model. For the variance parame-
ters in the random effects model, we used a half-normal(0,4)
and a half-normal(0,0.4) as priors for ’s and ’s, re-
spectively, at the top-level, and a half-normal(0,2) and a half-
normal(0,0.2) as priors for ’s and ’s, respectively, at
the site-level. We a priori allowed the shape parameters to vary
more at the top level than at the site-level by using a larger value
for the variance in the half-normal priors for the top-level vari-
ance parameters. This is a reasonable assumption because in-
tuitively we expect to see a larger variability in the activation
patterns across sites, compared to across runs within a site.

We ran the heuristic clustering algorithm for initialization of
the single-image model described in Section II-C on one of the
80 images (10 sites 8 runs), and used the results as initial
values for the number of components and component param-
eters. The output of this heuristic algorithm for the component
labels of the single image was used to initialize the labels for all
of the other images.

C. Illustrative Results for a Single Subject

To illustrate the methodology, we fit the two multiple-image
models to the right precentral gyrus of subject 5. Using the
single sample with the highest posterior probability, we show
the estimated image-level (or run-level) activation patterns for
the 8 runs in site 3 in Fig. 3 for the nonrandom effects model
and the random effects model. In the first column of Fig. 3, we
include the raw images, and in the second column in Fig. 3, we
highlight the top 15% voxels with the highest intensities in each
image, which would correspond to the results of single-voxel
analyses. Ellipses are drawn to show a region of width stan-
dard deviation centered around the location parameters with the
height parameters represented by the thicknesses of the ellipses.
Ellipses with the same color across all sites and runs correspond
to the same activation component.

For comparison, we fit the single-image model to each of the
8 images separately and show the results in the third column of
Fig. 3. This single-image model correctly recognizes the high
intensity areas as activation components, and finds other acti-
vation components with lower intensities. However, since this
model analyzes each image separately it cannot link informa-
tion across the eight runs even though the activation patterns
are quite consistent among the images.

In the last two columns of Fig. 3 we see that the hierarchical
Dirichlet process with random effects captures common acti-
vation clusters better than the model without random effects,
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in the presence of run-specific variations in activation shapes.
For example, the random effects model recognizes the activa-
tion components with a relatively high intensity in the middle
of the images as realizations of the same component shared
among those images, whereas the nonrandom effects model fits
the same activation clusters with different combinations of mul-
tiple components in the different images. This shows that having
a fixed set of parameters for all of the images does not give the
model enough flexibility to model the variability due to sites and
runs. The random effects model found a more compact summary
of the site-specific activation pattern than the model without
random effects.

Histograms of the number of components over the last 3000
iterations are shown in Fig. 4. The posterior mass is peaked
around a larger number of components for the hierarchical
Dirichlet process without random effects than for the model
with random effects. This is because the hierarchical Dirichlet
process generates a larger number of components to summarize
the activation pattern in the same set of images, compared to
the model with random effects. Since the hierarchical Dirichlet
process has one set of fixed parameters shared across all of
the images, it tries to explain the local variability in activation
shape through additional activation components.

Using the same sample, we show the estimated top-level
and site-level template activation patterns in Fig. 5(a) for the
hierarchical Dirichlet process and in Fig. 5(b) for the model
with random effects. For the model without random effects in
Fig. 5(a), the activation components are drawn as ellipses with
size proportional to one standard deviation of the width pa-
rameters ’s centered around the location parameters ’s,
and with the thickness of the ellipses proportional to the height
parameters . In Fig. 5(a), the site-specific images on the
right contain a subset of exact copies of components from the
global template on the left. For the model with random effects
in Fig. 5(b), the global template shows the template activation
components as ellipses centered around the location parameters

’s with the height parameters ’s as thicknesses. For the
same model, we show the site-level templates on the right,
using the site-specific shape parameters, ’s and ’s, to
draw the ellipses. Note that the radii of the dotted-lined ellipses
for the model in Fig. 5(b) are proportional to 1.5 times the
standard deviation of the covariance parameters ’s and

that in turn represent the variation in the locations of
activation components.

As we can see in Fig. 5, once again, the random effects model
finds a more compact summary of the activation pattern than
the model without random effects by using a smaller number of
components to explain the activation pattern.

We notice that the across-run variability represented as
’s in Fig. 5(b) (on the right) is generally smaller than

the across-site variability represented as ’s (on the left).
The frequencies of each activation component appearing in any
of the ten sites for the subject are shown as numbers next to
each ellipse in the global template in Fig. 5. Similarly, the fre-
quencies of each activation component appearing in any of the
eight runs in each site for the subject are shown in the site-level
templates. Most of the components are common across all of

the eight runs within a site. This again shows that activation
patterns are fairly consistent across runs within a site.

As for the computation time, it took 71 min to run the MCMC
sampling algorithm for the hierarchical Dirichlet process model
on the 80 images used in Figs. 3 and 5, and 101 min for the
model with random effects on the same set of images. These
computation times could be considerably shortened by code op-
timization and/or by parallelizing the algorithms for execution
on multicore machines or grid architectures.

D. Comparison of Models across Subjects

We fit the model with random effects to the fMRI data for
each subject for the left precentral gyrus and right superior tem-
poral gyrus and show the estimated global activation templates
in Fig. 6. The estimated activation components are shown as el-
lipses that correspond to 1.5 times the covariance in the
component location parameters, centered around the location
parameters , with the height parameters as thicknesses.
The number of times that each component appears in the 10
site-specific templates is shown next to the ellipses. We show
only those components that appear in 5 or more sites.

Even though each subject is analyzed separately, there are
several activation clusters in the results shown in Fig. 6 that
appear consistently across subjects within a region of interest.
For example, in the left precentral gyrus in Fig. 6, the models
found an activation cluster in the upper left of the image in all
of the subjects. For the right superior temporal gyrus all of the
subjects show two activation clusters on the right of the images.

E. Analysis of Variability in Activation Patterns

The model with random effects can be used to estimate how
much variability in the activation patterns is due to different
sources, e.g., run-to-run versus site-to-site variability. The re-
sults from Fig. 5(b) suggest that site variability is larger than
run variability in terms of the locations of activation clusters,
since for most of the clusters, the ’s are larger than the

’s. Here we quantify more precisely the overall variation
in the height and location parameters due to sites and runs on
a per-subject basis. Given the estimated parameters for each re-
gion of interest (from the sample with the highest posterior prob-
ability from the model) we compute the overall site variability
in the height parameters by taking an average of
the variance parameters ’s over all of the components as
follows:

Similarly, we compute the overall run variability in the height
parameters by taking an average of the variance
parameters ’s over all of the sites and components as fol-
lows:

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 14,2010 at 18:37:23 UTC from IEEE Xplore.  Restrictions apply. 



KIM et al.: A BAYESIAN MIXTURE APPROACH TO MODELING SPATIAL ACTIVATION PATTERNS IN MULTISITE FMRI DATA 1269

Fig. 3. Results for the right precentral gyrus for subject 5. Each row corresponds to an image from one of 8 runs for the same individual. In column 2, the top 15%
voxels with the highest intensity levels are highlighted. In columns 3–5, estimated activation components are overlaid on the images. In column 3, a single-image
model is fit to each of the 8 runs separately. In the case of multiple-image models (columns 4 and 5), we fit the models to all of the 80 images for subject 5 and
show the estimated run-level activation patterns, using the single sample with the highest posterior probability.

We plot the results for the right precentral gyrus in Fig. 7(a). As
we expected, for all of the subjects, the site variability is much
larger than the run variability.

We perform the same analysis for the location parameters.
We summarize the information in the 2 2 covariance ma-
trices ’s by taking the sum of the two variance elements

and . We can compute the overall site
variability in the location parameters as

and, similarly, the overall run variability in the location param-
eters as

The results are shown in Fig. 7(b) for the right precentral gyrus.
Again, we see that in location parameters the site variability is
larger than the run variability. These results are consistent with
those of Friedman et al. [16], who analyzed images from the
same experiment using analysis of variance models applied to
statistics such as the maximum and median values of percent
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Fig. 4. Histograms of the number of components over the last 3000 iterations for the right precentral gyrus for subject 5. For the single-image model, the histogram
for run 1 in visit 1 is shown.

Fig. 5. The global template (on the left) and site-level templates (on the right) estimated by (a) a hierarchical Dirichlet process and (b) a hierarchical Dirichlet
process with random effects, using the right precentral gyrus of subject 5. Note that the solid ellipses in (a) represent the widths of the activation components,
whereas the dotted ellipses in (b) represent the variation in the location parameters of activation clusters. The single sample with the highest posterior probability
is shown. The frequencies of each activation component appearing in any of the 10 sites for the subject are shown as numbers next to each ellipse in the global
template. Similarly, the frequencies of each activation component appearing in any of the eight runs in each site for the subject are shown in the site-level templates.

signal change and contrast-to-noise ratio within each region of
interest.

In Fig. 7(a) and (b), the difference between the site and
run variability is larger for the height parameters than for the
location parameters. A plausible explanation is that there are
scanner-specific characteristics such as the magnet strength that
affect the heights of activation clusters more than the locations.

In Fig. 5(b), we notice that most of the activation components
are shared among all of the images across runs in the same site,
whereas this persistency is weaker across sites. In order to quan-
tify how persistent an activation component is across sites or
runs, we compute the average rate of occurrence of an activa-
tion component among the 10 sites or the 8 runs. We compute
the measure for site as follows:

Similarly, we use the following as the measure for runs:
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Fig. 6. Hierarchical Dirichlet processes with random effects fit to the left precentral gyrus and the right superior temporal gyrus of subjects 1, 2, 3, 4, and 5. The
global template activations based on the single sample with the highest posterior probability are shown as ellipses of 1.5 standard deviation of the covariances
��� centered at the locations � ’s with the heights � ’s as thicknesses. The frequencies of each activation component appearing in any of the 10 sites for the
subject are shown as numbers next to each ellipse.

If the values for or are close to 1, most of the images
across sites or runs share common components. We plot the re-
sults in Fig. 7(c). As we expected, activation components are
more persistent across runs than across sites.

F. Evaluation of Predictive Performance

To evaluate the predictive benefit of adding random effects
to the hierarchical Dirichlet process model, we conducted
a number of cross-validation experiments. Specifically, we
compute the logP score, , of test data
given training data for each model in each fold of the
cross validation. The logP score is a fair estimator of the pre-
dictive power of a model (irrespective of how many parameters
the model has), as it evaluates how much probability mass a
model assigns to unseen test data, higher probability values
being better (e.g., [34]). We compute the predictive log density

using Monte Carlo integration over the param-
eters (the component labels and random effects parameters) as
follows. We draw parameters from their posterior distribution
given the training data, evaluate the likelihood of the test
data given these parameters, and compute an average of this
likelihood over multiple posterior draws of the parameters.

For a given subject and region of interest, we perform cross-
validation at two different levels, one at the run level and the
other at the site level. For run-level cross-validation, we leave
out one run from each of the 10 sites, use those held-out 10 im-
ages as test data, and perform an 8-fold (across 8 runs) cross-val-
idation. For each set of held-out runs, we train the model on the
remaining 70 images from the 10 sites, and compute the pre-
dictive log-likelihood (or logP score) of the 10 held-out test im-
ages (one per site). In the site-level cross-validation, we leave
out one site at a time, use the 8 images in the held-out site
as test set, and perform a 10-fold cross-validation. We use the

images in the other 9 sites as training set, learn
the model, and compute the predictive log-likelihood of the 8
images at the test site. Intuitively, there should be more uncer-
tainty in a future observation when the same subject is scanned
at a new site, compared to when the same subject is scanned for

another run at the same site. Thus, we expect to see a lower pre-
dictive logP score per image for the leave-one-site-out than for
the leave-one-run-out cross-validation.

We show the average per-voxel logP scores of test data for the
right precentral gyrus in Fig. 8. The figure shows the scores for
the five subjects from leave-one-run-out and leave-one-site-out
cross-validation. In Fig. 8(a), the -axis represents logP scores
from the model with random effects, and the -axis from the
model without random effects. For all of the subjects, the model
with random effects shows systematic improvement in logP
scores compared to the hierarchical Dirichlet process in both
leave-one-run-out and leave-one-site-out cross-validations.

In Fig. 8(b), we plot the logP scores of the five subjects for
both models using the -axis as the scores from the leave-one-
run-out cross-validation and the -axis as the scores from the
leave-one-site-out cross-validation. In all of the cases, the sub-
jects shown as letters lie under the line, confirming our
intuition that the leave-one-site-out cross-validation would give
a lower logP score.

VI. CONCLUSION

In this paper, we proposed a probabilistic framework for
analyzing spatial activation patterns in multiple fMRI activation
images. Each image was modeled as a mixture of a background
component and a number of activation components with each
activation component representing an activation cluster as a
Gaussian-shaped surface. We combined multiple single-image
models through a hierarchical Dirichlet process. With the hier-
archical Dirichlet process we were able to infer the activation
clusters that appear commonly in all or a subset of the images.
The number of activation components was inferred from the
data using a nonparametric Bayesian framework with a hier-
archical Dirichlet process. To allow further flexibility in the
model we incorporated random effects in the activation shape
parameters and let each individual image have image-specific
variation in the activation shape rather than forcing all images
to have a fixed set of activation shape parameters as is the case
in the hierarchical Dirichlet process. In this probabilistic frame-
work we were able to learn the unknown template activation
shape as well as the random effects parameters for each image,
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Fig. 7. Analysis of variability in activation patterns. (a) Variability in height parameters, (b) variability in location parameters, and (c) average rate of occurrence
of activation components across images.

Fig. 8. Results from cross-validations for right precentral gyrus. (a) With random effects versus without random effects. Each letter corresponds to leave-one-
site-out or leave-one-run-out cross-validations for each of the five subjects. (b) Leave-one-site-out versus leave-one-run-out. Each letter corresponds to the models
with or without random effects for each of the five subjects.

and we demonstrated this on a dataset from a multisite fMRI
study.

The model we proposed in this paper assumes that the group-
specific variation in parameters in any single mixture compo-
nent is independent of the variation in parameters of other com-
ponents. A possible extension would be to model additional
systematic group variation in the mixture component parame-
ters such as global translations of the template (or a subset of
the components) in an image, e.g., due to different MRI ma-
chine characteristics or head positioning. We could also include
across-subject variability in the model instead of analyzing each
subject separately, and model the interaction between subjects
and sites in terms of variation in the activation shape.

Other information could also be used to further enhance the
model. For example, in this paper we focused on activation maps
that summarize the voxel time-series into a single image. To
take advantage of all of the information present in the dataset, a
useful extension would be to model spatial patterns over time,
e.g., combining the proposed Dirichlet process framework with
the time-dependent model of Penny and Friston [7]. Further-
more, structural MRI scans collected for a subject could be used
as a spatial prior to constrain modeled activation areas to gray
matter regions in the brain (e.g., as proposed in [35]).

Another useful direction would be to extend the hierarchical
Dirichlet process with random effects proposed in this paper to
model differences between labeled groups of individuals, e.g.,
in studies of controls and patients for a particular disorder. This
could be done by introducing a variable for a group label in

the model, whose value is known in the training data, but is
unknown at prediction time.

APPENDIX A
SAMPLING ALGORITHM FOR HIERARCHICAL

DIRICHLET PROCESSES

Sampling Component Labels: To sample the component
labels we use the sampling algorithm based on the clustering
properties of (13) and (14). We sample the local cluster labels

’s by drawing each of the ’s in turn from the conditional
posterior distribution, given as

if was used
if

where is the set of all component parameters, is the param-
eters of one of the components associated with the th local
cluster in image , and

(17)

We sample the global cluster labels ’s using the conditional
posterior distribution given as shown in (18) at the bottom of the
page.
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Since we do not have conjugate priors for the component pa-
rameters in this model for fMRI data, it is not possible to eval-
uate the integrals in (17) and (18) analytically for a new compo-
nent. We approximate the integrals by drawing a sample from
the prior and evaluating the likelihood using this sample [31].

Sampling Component Parameters: Given the sample for
component labels we sample the component parameters. We
use Gibbs sampling to sample the background mean and the
Metropolis algorithm with the normal distribution as a proposal
for all of the other parameters. We place a gamma prior on and

and sample values for these parameters from their conditional
posterior distributions [21].

APPENDIX B
SAMPLING ALGORITHM FOR HIERARCHICAL DIRICHLET

PROCESSES WITH RANDOM EFFECTS

Sampling Component Labels: Because of the presence
of image-specific shape parameters, the sampling methods for
component labels for a hierarchical Dirichlet process in (17)
and (18) cannot be directly applied to its extension with random
effects. In a hierarchical Dirichlet process, since image-level
shape parameters are exact copies of the corresponding com-
ponent parameters in the template activation pattern, whenever
we decide to generate a new local cluster for an image-specific
activation pattern, we can simply copy the parameters from
the template. However, in the model with random effects,
each image inherits a perturbed version of the parameters in
the template, and we should consider two separate cases of
known and unknown image-specific parmaters for each of the
template component, when generating a new local cluster. The
known image-specific parameters indicate that the component
in the template pattern has been introduced to the image before,
whereas such parameters do not exist for the component being
introduced to the image for the first time. We modify the
sampling equations for hierarchical Dirichlet processes to take
into account image-specific parameters as described below.

We sample ’s using the following conditional distribution:

if was used
if

where is the image-specific activation component parame-
ters associated with the th local cluster in image and

(19a)

(19b)

(19c)

In (19a) the summation is over components in some
for is assigned to , representing global clusters that

already have some local clusters in image assigned to them. In
this case, since is already known, we can simply compute
the likelihood . In (19b) the summation is over

no for is assigned to representing global
clusters that have not yet been assigned in image . In (19c) we
model the case where a new global component gets generated.
The integrals in (19b) and (19c) cannot be evaluated analyti-
cally, so we approximate the integral by sampling new values
for and from their prior distributions and evaluating the
likelihood [31].

Samples for ’s can be obtained from the conditional distri-
bution given as shown in (20) at the bottom of the page. As in
the sampling of , we cannot evaluate the integrals in (20) ana-
lytically. We approximate the integrals by sampling new values
for and from the priors and evaluating the likelihood.

Sampling Component Parameters: Given and we use
Gibbs sampling to sample the background means and ’s
and use the Metropolis algorithm with a normal distribution as
a proposal for all of the other parameters.

In practice, this MCMC scheme for the hierarchical Dirichlet
process with random effects can mix poorly and get stuck in
local maxima where the labels for two image-level components
are swapped relative to the same two components in the tem-
plate. To address this problem and restore the correct correspon-
dence between template components and image-level compo-
nents we propose a move that swaps the labels for two group-

if was used in image

if is new in image
(18)

if was used in image

if is new in image

if is a new component

(20)
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level components at the end of each sampling iteration and ac-
cepts the move based on a Metropolis acceptance rule.
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