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ABSTRACT

Motivation: Population heterogeneity through admixing of different
founder populations can produce spurious associations in genome-
wide association studies that are linked to the population structure
rather than the phenotype. Since samples from the same population
generally co-evolve, different populations may or may not share the
same genetic underpinnings for the seemingly common phenotype.
Our goal is to develop a unified framework for detecting causal
genetic markers through a joint association analysis of multiple
populations.
Results: Based on a multi-task regression principle, we present a
multi-population group lasso algorithm using L1/L2-regularized
regression for joint association analysis of multiple populations
that are stratified either via population survey or computational
estimation. Our algorithm combines information from genetic
markers across populations, to identify causal markers. It also
implicitly accounts for correlations between the genetic markers, thus
enabling better control over false positive rates. Joint analysis across
populations enables the detection of weak associations common to
all populations with greater power than in a separate analysis of each
population. At the same time, the regression-based framework allows
causal alleles that are unique to a subset of the populations to be
correctly identified. We demonstrate the effectiveness of our method
on HapMap-simulated and lactase persistence datasets, where we
significantly outperform state of the art methods, with greater power
for detecting weak associations and reduced spurious associations.
Availability: Software will be available at http://www.sailing.cs.cmu
.edu/
Contact: epxing@cs.cmu.edu

1 INTRODUCTION
Association mapping has recently become a popular approach to
discover the genetic causes of many complex diseases such as
cancer, asthma and diabetes. A typical genome-wide association
(GWA) study involves examining genotype data, often single-
nucleotide polymorphisms (SNPs), collected over millions of
genetic markers in search for an association with the given
phenotype such as disease outcome or disease-related quantitative
traits, where a very small fraction of the markers are linked to the
phenotype. Thus, the main challenge is to maximize the power for
identifying causal alleles while suppressing false positives.

We consider the problem of taking advantage of the population
structure in the samples to increase the power of an association
analysis. It has been observed that population heterogeneity arising
from admixing of ancestor populations almost always exists at
different levels in any genotype data, and is often correlated with
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the geographical distribution of the individuals. For example, it has
been shown that such heterogeneity is present in the HapMap data
(The International HapMap Consortium, 2005) across European,
Asian and African populations; and heterogeneity at a finer scale
within European ancestry has been found in many genomic regions
in the UK samples of Wellcome trust case control consortium
(WTCCC) dataset (Wellcome Trust Case Control Consortium,
2007). Although the standard assumption in existing approaches
for association mapping is that the effects of causal mutations are
likely to be common across multiple populations, the individuals
in the same population or geographical region tend to co-evolve,
and are likely to possess a population-specific causal allele for the
same phenotype. For example, Tishkoff et al. (2006) reported that
the lactase-persistence phenotype is caused by different mutations
in Africans and Europeans. In addition, the same genetic variation
has been observed to be correlated with gene-expression levels with
different association strengths across different HapMap populations.
Our goal is to be able to leverage information across multiple
populations, to find causal markers in a multi-population association
study.

1.1 Highlights of this article
We propose a novel multi-task-regression-based technique that
performs a joint GWA mapping on individuals from multiple
populations, rather than separate analysis of each population, to
detect associated genome variations. The joint inference is achieved
by using a multi-population group lasso (MPGL), with an L1/L2
regression penalty (Obozinski et al., 2008; Yuan and Lin, 2006;
Zhao et al., 2008) that encourages (but does not enforce) multiple
populations to have similar causal markers. We assume that the
population label for each individual is either known or has been
inferred from the genotype, e.g. by using well-known programs such
as Structure (Pritchard et al., 2000) or mStruct (Shringarpure and
Xing, 2009).

As illustrated in Figure 1, the MPGL (Fig. 1a) can detect causal
SNPs in multiple populations jointly, unlike standard regression
techniques applied on individuals in each population separately
to infer associations in a population-specific manner (Fig. 1b).
Statistically, while the L1 part of the L1/L2 penalty in MPGL
plays the role of identifying a small number of SNPs with non-
zero association strengths, the L2 part is applied to the regression
coefficients for each SNP across all populations to allow them to
have varying association strengths. Thus, association signals that
are weak in each population but common to all of the populations
are combined across populations, and therefore can be detected with
a greater power. At the same time, if a non-causal SNP has weak
association in a small subset of populations, the joint inference will
not conclude it as being associated with the phenotype, reducing the
overall false positive rate.
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(a) (b)

Fig. 1. Illustration of association analysis methods. (a) Multi-population
group lasso finds causal SNPs via joint inference across multiple populations.
(b) Standard lasso on each population cannot find SNPs with weak
association to phenotype in some populations.

It is worth emphasizing that although MPGL performs a joint
selection of SNPs with non-zero association strengths, it still
allows each associated SNP to affect different populations with
different magnitudes and direction of association. Thus, it recognizes
population-specific causal alleles with relatively strong associations
in a subset of the populations. Since association strengths are defined
for each population separately (but estimated jointly), this technique
also effectively corrects for population stratification. Our results
demonstrate that the proposed method outperforms various existing
methods in terms of reducing the spurious associations due to
population structure.

The conventional single-SNP association tests are not able to
distinguish between a set of correlated markers, increasing their
false positive rates tremendously. Our approach on the other hand,
is able to reduce the problem of correlations by analyzing all
markers simultaneously in a linear regression framework. Once the
marker with the strongest marginal correlation with the phenotype
is predicted to be associated, other markers that are also correlated
with this marker but do not give additional information about the
phenotype are automatically rejected, reducing false positives.

Additionally, using cross-validation, our approach can auto-
matically select the number of markers that are associated with the
given phenotype, with high probability. In contrast, the single-SNP
association tests involve the problem of selecting a P-value cutoff
after computing P-values to determine significant associations. It
is well-known that most phenotypes are complex traits that result
from combined effects of many different mutations with small effect
sizes, and the true number of causal markers is unknown. Hence,
automatically picking the correct number of markers presents a
significant advantage to our method.

We show the effectiveness of our approach on data simulated
from HapMap genotypes over a wide variety of conditions, where
the set of true causal markers are known. In all our experiments,
we assume that the true population structure is unknown, and first
use structure to estimate the population structure. Our approach
outperforms state-of-the-art methods for association mapping in
the presence of population stratification, when the number of
causal markers shared across populations vary, the strength of the
association in different populations vary and the allele frequency
of the causal marker varies across populations. On the WTCCC
lactase-persistence datasets, our algorithm is able to directly identify
a single marker that has been reported to be associated with lactase
persistence, while other approaches either report too many markers
or too few.

1.2 Related work
While association mapping is a very well-studied problem in the
literature, existing methods either completely ignore population
structure, or focus on reducing spurious associations that are linked
to the population structure rather than to the phenotype (Devlin et al.,
2004; Hoggart et al., 2003; Price et al., 2006; Zhu et al., 2002).

Genomic Control (GC) (Devlin and Roeder, 1999; Devlin et al.,
2004) uses supplementary loci (called null markers) to correct for
the population effect, which is assumed to be uniform across the
genome. Any associations found between these null markers and
phenotypes are attributed to the population stratification. GC first
estimates an inflation factor using null SNPs, and then correct the
P-values with this inflation factor. PSAT (Kimmel et al., 2007)
uses a novel dynamic programming algorithm, for fast randomized
permutations tests to correct for an unknown population structure.

Unlike GC that does not require knowledge of the genealogy
of the population or the nature of population heterogeneity,
structured association explicitly takes into account the population
heterogeneity in the samples. For example, Strat (Pritchard et al.,
2000) first learns the population structure using structure, performs
an association test within each population and then combines the
results across populations. Eigenstrat (Price et al., 2006) on the
other hand makes use of principal component analysis to remove
ancestry information from the data before performing association
tests. Various other approaches have also been proposed to control
for population stratification, including likelihood ratio tests (Purcell
and Shamb, 2004), logistic-regression-based tests (Epstein et al.,
2007) and mixed-model approach (Yu et al., 2005).

Almost all of the association mapping literature is based on
performing a statistical test for finding significant correlations
between the phenotype and one SNP locus at a time, and correcting
for multiple hypothesis testing. While multivariate regression
methods such as lasso and ridge regression have been applied for
classical association mapping (Hoggart et al., 2008; Malo et al.,
2008; Shi et al., 2007; Wu et al., 2009), to our knowledge, our work
is the first to consider a multivariate regression framework in an
association study involving multiple populations.

2 METHODS
We begin our discussion with a brief overview of lasso for association
analysis, and its extension to multi-population association analysis to give a
flavor of how multivariate regression techniques can be used for association
analysis. We then describe our MPGL algorithm for joint inference over
multiple populations, and discuss a procedure for parameter estimation for
our algorithm, and a method for selecting the optimal number of association
markers automatically.

2.1 Lasso for association mapping
Let X denote the n×p matrix of genotype data for a homogeneous population,
where n is the number of individuals involved in the study, and p is the
number of markers genotyped for each individual. In the case of SNP
markers, each element xij in X represents the number of minor alleles at
the j-th locus of the i-th individual. Let y be the vector of length n for
measurements of the phenotype. We assume a linear model between the
genotypes and the phenotype:

y=Xβ+ε, (1)

where β represents a vector of p regression coefficients for association
strengths, and ε is a vector of length n for zero-mean Gaussian noise with
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fixed variance. We normalize y and each column of X to have zero mean, so
that we do not have to explicitly model the bias term. When n is large and
p is small, the regression coefficients β can be estimated by minimizing the
sum of squared residuals:

min
β

1

2
(y−Xβ)′ ·(y−Xβ). (2)

When the number of markers p is much larger than the number of individuals
n as in a typical association study, the estimate of β obtained by solving
Equation (2) is unattainable.

In association mapping, we typically expect a small number of loci to be
associated with the phenotype, and lasso provides an effective tool to identify
those relevant SNPs and set the regression coefficients for irrelevant SNPs
to zero (Wu et al., 2009). Lasso obtains an estimate of β by minimizing the
penalized sum of squared residuals as follows:

min
β

1

2
(y−Xβ)′ ·(y−Xβ)+λ

p∑
i=1

|βi|. (3)

The second term in the above equation indicates an L1 penalty that
encourages a sparsity such that only few SNPs have non-zero regression
coefficients. The SNPs with non-zero regression coefficients are then
predicted to be associated with the phenotype. The regularization parameter
λ controls the amount of such penalty, and thus sparsity. A large value of
λ means a greater amount of penalization, leading to more SNPs with zero
regression coefficients.

2.2 Association analysis for multiple populations
When lasso is applied to an association mapping with a pooled dataset of all
populations, it can effectively detect causal SNPs that have common effects
on all of the populations. However, if the SNP influences the phenotype
in a subset of the populations, or affects the phenotype with different
strengths in different populations, the pooled analysis with lasso is likely
to miss the population-specific association signals, since such signals may
be outweighed by the information in other populations.

In this section, we assume that the population structure in the samples is
known from prior knowledge or analysis, and make use of this information
during the association analysis to detect both the population-specific and
shared causal mutations. Any of the previously developed methods (Hubisz
et al., 2009; Shringarpure and Xing, 2009) for clustering individuals into
populations based on allele frequencies can be used to infer the population
structure before applying our method. In addition, when the population
structure is known, this prior information can be directly used to form
groups of individuals corresponding to multiple populations. In this article,
we use the allele-frequency admixture model implemented in Structure
to infer the admixing proportions for individuals, and apply k-means
clustering (Hartigan, 1975) on the estimated admixing proportions to learn
the population label for each individual.

Assuming that the population labels for individuals are known,
subsequently we discuss how lasso can be applied in this setting, and in
the next section, present our new approach that uses an L1/L2-regularized
regression to maximize power by combining information and estimating the
association strengths jointly across multiple populations.

2.2.1 Lasso for structured association Given the population labels zi’s,
zi ∈{1,...,C}, for the i-th individual and C populations, we group the
genotype and phenotype data according to these labels into yc ={yi|zi =c}
and Xc ={xi|zi =c}, where c=1,...,C, so that within the c-th group the
individuals come from the same population. Then, within the c-th group, we
can assume that there is no population structure and use lasso in Equation
(3) to learn associations, using yc and Xc:

min
βc

1

2
(yc −Xcβc)′ ·(yc −Xcβc)+λ||βc||1, (4)

where βc represents within-population association strengths. We repeat the
above estimation process for each of the C groups, and examine the sparsity

pattern in the βc’s to draw conclusions on which SNPs are causal to the
phenotype.

2.3 Multi-population group lasso with L1/L2 penalty
While applying lasso within an inferred population can detect population-
specific causal variants that a pooled analysis of all populations may be
unable to identify, this approach analyzes each population separately without
taking advantage of the relatedness among the βc’s through the shared
causal SNPs, and may miss the weak association signals for common SNPs.
Building on the multi-task regularized-regression framework recently studied
in machine learning and high-dimensional statistics (Meier et al., 2008;
Obozinski et al., 2008; Yuan and Lin, 2006; Zhao et al., 2008), we describe
our MPGL algorithm using L1/L2-regularization that can maximize the
power for detecting SNPs that affect more than one population as well as
population-specific causal SNPs.

Let us define B to be a p×C matrix [β1,...,βC ], whose c-th column
corresponds to the regression coefficients for the c-th population. Let β j
denote the j-th row of B that corresponds to the regression coefficients for
the j-th SNP across the C populations. Then, the L1/L2 penalty is defined as
follows:

||B||L1/L2 =
p∑

j=1

||β j||2 , (5)

where ||x||2 =
√∑C

c=1 x2
c . In this case, the L1 penalty is applied over the

L2 norms of vectors of regression coefficients β j’s, rather than individual
elements of regression coefficients as in lasso. Using this penalty, the L1/L2-
regularized regression for a joint association analysis of multiple populations
obtains the estimate of B by solving the following optimization problem:

min
B

1

2

C∑
c=1

(yc −Xcβc)′ ·(yc −Xcβc)+λ||B||L1/L2 , (6)

where λ is the regularization parameter that determines the amount of
penalization. The L1/L2 penalization plays the role of shrinking the
regression coefficients β j for the j-th SNP across all populations to zero
jointly, if that SNP is not associated with the phenotype, thus reducing the
number of false positives. On the other hand, if the SNP is relevant to at
least one of the C populations, all of the elements in β j will be selected
jointly to have non-zero values, but the L2 norm still allows the association
strengths to be different across the populations for the j-th SNP. Thus, the joint
inference made by the L1/L2 penalty enables us to infer association between a
causal SNP and the phenotype by borrowing strength across populations and
setting the corresponding regression coefficients jointly to non-zero values.
We notice that a large value of λ will set more rows β j’s of B to zero.

Various block-structured norms in the form of L1/Lq, q>0, to combine
information from related inputs or outputs in a regression problem have been
previously proposed (Turlach et al., 2005; Zhao et al., 2008). For example,
in group lasso (Yuan and Lin, 2006), the grouping structure of the inputs
is assumed to be known, and the Lq part of the L1/Lq norm is defined over
regression coefficients for the members in each group, so that they are jointly
set to zero or non-zero values. In a multiple-output regression, the Lq part
of the L1/Lq norm is over the regression coefficients for all outputs for each
input, and an input is selected to be jointly influencing all of the outputs.
Our use of L1/L2 norm differs from these previous methods in that we take
advantage of the grouping structure among the samples rather than inputs or
outputs, where each group corresponds to a population.

Obozinski et al. (2008) found that for k regressions, under certain
conditions, the sample complexity for L1/L2, is up to k times smaller than the
lasso sample complexity, with weak assumptions of shared support. Thus,
under certain conditions, the L1/L2 regression framework will require up
to k times fewer samples than lasso to obtain the correct set of associated
markers.

2.3.1 Parameter estimation We estimate the regression coefficients B by
solving the optimization problem in Equation (6). The L1/L2 penalty is not
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smooth at zero, and for this reason, methods based on the first-order gradient
cannot be used directly for optimizing it. Hence, we optimize this problem by
transforming the problem into a single-output multivariate regression with
a group-lasso penalty, and apply a fast optimization method developed for
group lasso (Tomioka and Sugiyama, 2009).

In order to transform the problem in Equation (6), we concatenate βc’s
to form a vector of length (p·C), βg =[(β1)T ,...,(βC )T ]T . Similarly, we
concatenate yc’s to form a vector of length n, yg =[(y1)T ,...,(yC )T ]T , and
form (n)×(p·C) block-diagonal matrix Xg, where Xc’s are placed along the
diagonal, and the rest of the elements are set to 0. Then, the problem in
Equation (6) can be re-written as:

min
B

1

2
(yg −Xgβg)T ·(yg −Xgβg)+λ||B||L1/L2 . (7)

This transformed problem can be viewed as a single-output multivariate
regression with (p·C) inputs, where the grouping of the input is defined
according to the population structure. This shows that the L1/L2-regularized
regression for joint analysis of multiple populations is equivalent to group
lasso in the transformed space.

The solution for the problem in Equation (7) can be obtained by re-writing
it in an equivalent form, as a constrained optimization problem, converting
it into the dual form, and then solving this dual problem (Tomioka and
Sugiyama, 2009). Since the problem in Equation (7) is convex, we are
guaranteed that the solution obtained by optimizing this dual problem is
equivalent to the solution obtained by optimizing the original primal problem
in Equation (7). The dual can now be expressed in the augmented lagrangian
form (Bertsekas, 1982), to develop a much faster optimization technique
than conventional gradient-based techniques. Further, the dual augmented
lagrangian can update both primal and dual variables, and exploit the known
sparsity in the primal solution. This provides this method with two major
advantages. By tracking the solution in both primal and dual space, the
stopping criteria used is that the primal and dual objective values are close
to each other, which is a direct measure of how close the current solution
is to the true optimal solution. Since the stopping criteria directly measures
how close the current solution is to the optimal solution, the algorithm is
more stable and precise than other optimization techniques. Secondly, since
the optimization occurs in the dual space, it is efficient when the number
of SNPs is much more than the number of individuals, as is the case in a
typical association analysis. For these reasons, the implementation of our
method is extremely fast and takes < 1 second on an Intel Core-2 CPU with
1 GB memory to estimate the association strengths of 2000 SNPs in two
populations with 257 individuals. When n�p as in a typical association
analysis, we found that this implementation of L1/L2-regularized regression
is as efficient as lasso.

2.3.2 Selecting the number of association markers One of the main
advantages of regularized-regression approaches is that we can tune the
regularization parameter λ automatically to select the correct number of
association markers, with high probability. In contrast, we note that all
methods based on single-SNP association tests require the user to input an
arbitrary P-value cutoff that is used to determine which of the markers are
significantly associated.

We hold out a small number of individuals in the entire dataset as a
validation set and select the value of the regularization parameter λ that
gives the optimal level of sparsity, by minimizing prediction errors on the
validation set. Our procedure involves two steps. In step one, we fit a
suite of candidate models with different λ values on the training data, as
described in Section 2.3.1. Since we only change the value of λ and the
training data remains the same, warm starts can be used for fast optimization.
As λ increases, the number of markers with non-zero association strengths
reduces. In step two, we evaluate each model using the phenotype prediction
error on the validation set, and select the λ that gives the lowest prediction
error on the validation set. We repeat this process 10 times by randomly
splitting the data into training and validation sets, and select the value for λ

that gives the lowest error on average over the 10 runs.

To evaluate the phenotype prediction error, we need to first reduce the
bias introduced by penalized regression. Hence, once we learn the sparsity
pattern of non-zero regression coefficients, for each model, we re-estimate
the regression coefficients for those non-zero elements using a standard
least square method without penalty terms (Hastie et al., 2003). Thus, for
a particular λ, if the set of predicted associated markers is Sλ, then β̂(λ)
is computed as the least square estimator for the regression with markers
restricted to Sλ. In other words, we have β̂(λ)= (XT

λ Xλ)−1XT
λ Y , where

Xλ = (X•j : j∈Sλ) is the matrix for all individuals, but only those markers
predicted as associated with the phenotype by our model. The β̂(λ) is then
extended to length p by setting β̂j(λ)=0 for j �∈Sλ. The phenotype prediction
error is then simply computed using this estimate of β̂(λ) as (Yv −Xvβ̂(λ))2,
where (Xv,Yv) is the validation set. For lasso regression, Wasserman and
Roeder (2009) prove that the true association markers will be included in
the predicted associated markers found by this validation procedure with
high probability. We expect that a similar proof will also apply for the L1/L2

regression.
Finally, the optimal λ selected by the procedure outlined above is used to

train the model on the entire dataset, and we report results on these estimates.

3 RESULTS
In this section, we compare the performance of the MPGL with those
of previously developed methods such as single-SNP association
tests without controlling for population stratification, GC (Devlin
and Roeder, 1999), Eigenstrat (Price et al., 2006), lasso for a pooled
dataset of individuals from all populations (Wu et al., 2009), and
lasso for structured association (lasso SA) as discussed in Section
2.2.1. We perform an extensive simulation study under various
scenarios, using datasets simulated from HapMap genotypes, and
demonstrate our method on a real dataset, the lactase-persistence
phenotype with the WTCCC genotypes.

3.1 Simulation study
To provide a realistic setting for simulations, we use genotypes
of 257 unrelated individuals in two HapMap populations, 87
individuals from Maasai in Kinyawa, Kenya (MKK) and 170
individuals from the Asian population comprising of Han Chinese
and Japanese (JPT+CHB), and simulate the phenotypes based on
these genotypes. After discarding SNPs with variance <0.5% that
corresponds to a minor allele frequency of <1%, we select every
10th SNP to reduce the effects of linkage disequilibrium, and use a
block of 2000 SNPs as inputs. To simulate phenotypes from these
genotypes, we randomly select 20 SNPs that are causal in at least
one of the two populations with non-zero regression coefficients,
and set their association strengths to values sampled from a uniform
distribution of [0,5] with the directions of the associations assigned
randomly to either positive or negative. For each individual, given
the regression coefficients corresponding to the population that
the individual belongs to, we generate the phenotype using the
linear relationship in Equation (1) with noise distributed as N(0,1).
We generate 50 such datasets based on different regions in the
autosomal chromosomes, and report the results averaged over these
datasets. We run structure on each set of genotypes with the number
of populations set to two to learn the admixing proportions of
each individual. An example of the population structure learned by
structure from a single set of 2000 SNPs is shown in Figure 2.

In Figure 3, we compare the performances of different association
methods using a single simulated dataset. We first plot the true
association strengths in red for Populations 1 and 2 in Figure 3a
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and 3b, with a blue marker representing causal SNPs shared across
multiple populations. As can be seen, some of the SNPs have
very weak association with the phenotype, making detection of this
association very hard. Figures 3c–j show the association strengths
detected by various methods. In each panel, we mark the true
association with a green circle, and a predicted association with a
red ‘+’. For the multivariate regression methods (Figures 3c–g), we
used cross-validation to select the association SNPs, and hence, we
plot the association strengths for the predicted causal SNPs. Thus,
an overlap between a red and green marker is a true association, a
green marker without a corresponding red marker is a false negative,
and a red marker without the green marker is a false positive.
In Figures 3c–f, we observe that MPGL has 69% precision and
45% recall, and clearly outperforms lasso for structured association

0 50 100 150 200 250
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Fig. 2. Admixing proportions inferred by structure assuming two
populations on a single simulated dataset.

with 49.6% precision and 37.5% recall. Lasso (Fig. 3g) detects not
only many of the causal SNPs correctly, but also has a very high
false positive rate, since it does not use any population structure
information. For the methods based on single-SNP hypothesis
testing (Fig. 3h–j), we plot a line corresponding to a P-value of
0.05. Thus, the green markers above the P-value cutoff line are true
positives, the green markers below the P-value cutoff line are false
negatives, and the red markers above the cutoff line representing
false positives. Eigenstrat (Fig. 3h) in spite of having structural
information, and identifying many true positives, also has a very
high false positive rate, and overall has similar performance as
lasso. Both GC and single-SNP analysis have a very large number of
false positives as well, and it is very hard to derive any meaningful
conclusions from these results. This only serves to emphasize that
detecting and correcting for the presence of population structure is
very essential for correct association analysis.

We evaluate various association methods in terms of how
successfully they identify the true causal SNPs with few false
positives, and summarize the results by plotting the partial receiver
operating characteristic (partial ROC) curves and reporting the
partial areas under the curves (PAUC). A partial ROC curve plots
the true positive rate for recovering true causal SNPs on the y-axis
and the false positive rate on the x-axis, over a range of small values
of false positive rates. When the number of SNPs is large and the
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Fig. 3. Results from association analysis of a single simulated dataset from HapMap. (a–b) The red markers show the true association strengths for populations
1 and 2, respectively (the shared causal SNPs are highlighted in blue). Association strengths are shown for (c–d) MPGL for populations 1 and 2, (e–f) lasso
for structured association for populations 1 and 2, (g) lasso, (h) Eigenstrat, (i) GC and (j) single-SNP association tests. We plot the absolute values of the
regression coefficients in (a–g), and −log(P-value)’s in (h–j). Red markers show the predicted value, and green circles show the true causal SNPs.
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Fig. 4. Partial ROC curves of various association methods based on a single
simulated dataset. Out of the 20 causal SNPs, 16 SNPs have non-zero
association strengths in both of the two populations, while the remaining
four SNPs are causal in only one of the two populations.

number of SNPs with true associations is small, we are primarily
concerned with the area of low false positive rates in the ROC curves,
and thus, we focus our attention to this range of false positive rates
[0,0.05]. The PAUC is defined as the area under the ROC curves
in this range of false positive rate, normalized by the length of the
partial range being considered, so that the maximum PAUC possible
is one. A higher value for PAUC represents better performance.

Figure 4 shows the partial ROC curves comparing the various
methods in the range of false positive rates [0,0.1] obtained from
a single simulated dataset. We select 16 SNPs as causal in both
of the two populations and four SNPs as causal for one of the
two populations. As can be seen in Figure 4, both the MPGL and
lasso for structured associations significantly outperform all of the
existing association methods, demonstrating the effectiveness of
these approaches. In addition, MPGL significantly improves the
performance of lasso applied to each population separately, because
it can borrow strength across multiple populations to detect true
associations. Interestingly, we observe from Figure 4 that lasso for
a pooled dataset of all populations performs nearly as well as the
single-SNP analyses controlling for the population stratification such
as Eigenstrat and GC, even though it does not make use of any
information on population structure. This reaffirms that in general
the sparse multivariate regression provides a powerful tool for
association analysis, compared to traditional single-SNP hypothesis
tests. In general, we found that the range of false positive rates
[0,0.05] summarizes the overall trend in performances of different
methods across all ranges of false positive rates, so in the remainder
of this section, we show the PAUC values based on this choice of
interval for the false positive rate.

3.1.1 Effects of varying number of shared causal SNPs We vary
the number of shared causal SNPs across populations to see how the
amount of shared sparsity pattern affects the performance of various
methods. In Figure 5, we vary the percentage of shared causal SNPs
in the two populations, while keeping the total number of causal
SNPs fixed at 20, and show the results averaged over 50 datasets.
Figure 5 shows that when there is a large overlap between the
sets of causal SNPs of the two populations, MPGL significantly
outperforms all other methods, since it is able to borrow strength
across different populations to determine the shared SNPs as causal
or non-causal. In addition, we notice that as the number of shared
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Fig. 5. PAUC in simulated data, when the numbers of causal SNPs shared
across sub-populations varies. Assuming 20 causal SNPs, we vary the
percentage of these 20 SNPs that are causal in both of the sub-populations.
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Fig. 6. PAUC in simulated data, when the amount of differences in allele
frequencies of causal SNPs across sub-populations varies.

causal SNPs decreases, the performance of MPGL approaches that
of lasso for structured association. Thus, even when there is little
overlap in association SNPs between the different populations,
MPGL does not compromise its performance, compared to the
method that does not combine information across populations. The
paired t-test showed that the improvement in PAUC scores in
MPGL over lasso for structured association is significant when the
percentage of overlap in causal SNPs between associated SNPs
across populations is >50% with 99% confidence interval.

3.1.2 Effect of varying allele frequency of causal SNPs across
populations Next, we explore how the amount of differentiation
across populations that is present in the causal SNPs affects the
performance of various association methods. We use the absolute
value of the difference of the minor allele frequency between the
two populations as a measure of the amount of differentiation of
a SNP across populations, and consider four different levels of
differentiations given as intervals of [0,0.2], [0.2,0.4], [0.4,0.6] and
[0.6,0.8]. In each simulated dataset, we randomly select five SNPs
with the same level of differentiation as causal SNPs, and show the
results averaged over 50 datasets in Figure 6. We observe that for
almost all levels of differentiation, MPGL significantly outperforms
all other methods. Although the performance of GC improves as the
amount of differentiation increases, the variance of the performance
of GC is more than twice the variance of the other methods, which
is not desirable.

3.1.3 Effect of varying association strength of causal SNPs In
order to see how the signal-to-noise ratio affects the performance
of the various methods, we vary the strength of associations for
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Fig. 7. PAUC in simulated data, when the association strengths for all causal
SNPs are randomly sampled from one of the seven different intervals.

causal SNPs and show the results in Figure 7. In each simulated
dataset, the absolute values of the non-zero regression coefficients
are generated from one of the seven uniform distributions, [0,0.5],
[0.5,1.0], [1.0,2.0], [2.0,5.0], [5.0,10.0], [10.0,20.0] and [20.0,50.0].
For each of the intervals we show results averaged over 50 datasets.
For all of the ranges of association strengths, MPGL significantly
outperforms all of the other methods. As the signal-to-noise ratio
increases, the performance of MPGL improves at a faster rate than
any of the other methods. Especially, when the association strengths
is >5.0, its PAUC reaches 0.9, which is close to the perfect recovery
of true relevant SNPs. This shows that we can significantly benefit
from the use of the L1/L2 penalty that combines information on
sparsity pattern across multiple populations.

3.1.4 Effect of varying association strengths across populations
Finally, we consider the scenario in which the same causal SNP
influences the phenotype with different strengths in different
populations. For example, the association strength of a SNP might
differ in different populations due to genetic drift, growth, or
contraction of the two populations. In order to replicate this
scenario in our simulation, we generate the magnitude of association
strength for each causal SNP in one of the two populations from
a uniform distribution over [0,1], and then set the association
strength of the same SNP in the other population to a value that
is larger by a multiplicative factor of 0.1, 0.5, 1.0, 2.0, 5.0, 10.0
or 50.0. The PAUC values averaged over 50 datasets are shown in
Figure 8. The results show that even when the sparsity pattern of
causal SNPs is shared, but the values of association strengths are
different across populations, MPGL has the flexibility of allowing
the association strengths to differ for multiple populations and
performed significantly better than other methods.

3.2 WTCCC dataset with lactase-persistence
phenotype

We perform an association analysis of lactase-persistence phenotype
with genotypes in the WTCCC dataset, and compare the results from
our method with various other approaches.

While lactase activity typically disappears in childhood after
weaning, some individuals have the ability to digest lactose during
the adulthood. This trait, known as lactase-persistence, has been
shown to be completely determined by a particular mutation near
the LCT gene that encodes the lactase-phlorizin hydrolase (Enattah
et al., 2002). In addition, it has been observed that the lactase activity
is widely different across populations (Bersaglieri et al., 2004).
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Fig. 8. PAUC in simulated data, when the ratio of association strengths of
each causal SNP between the two populations varies. The association strength
of the causal SNP in population 1 is sampled from a uniform distribution
of [0,1], and the association strength of the same SNP in population 2 is
multiplicative of seven different values.

In particular, the geographic distribution of lactase persistence is
highly correlated with the distribution of dairy farming, and this
phenotype is more commonly observed in northern Europe. Since
the lactase activity is correlated with the population structure, it
is necessary to control for the population stratification to correctly
identify the mutation that determines lactase persistence.

We use the genotypes of 1504 individuals in the control group
of WTCCC dataset, and perform an association analysis, assuming
that the lactase-persistence phenotype is completely determined
by SNP rs4988243 in chromosome 2. Although the known causal
variant with 100% association with the lactase persistence has not
been typed in this dataset, SNP rs4988243 lies in a high linkage
disequilibrium region (r2 >0.9) with this known genetic variant in
HapMap dataset. The previous analysis of population structure in
WTCCC dataset has shown that the 135.16–136.82 Mb region on
chromosome 2 that includes the LCT gene and SNP rs4988243 at
136.32 M exhibits geographical variation, and we include the 2500
SNPs in this region in our analysis. Although the UK populations in
WTCCC datasets consist of immigrants from various parts of Europe
in history, the previous analysis of this data found that in many
of the genomic regions, there was not a significant differentiation,
and that the associations for case-control populations were not
significantly affected by population stratifications. Since our focus in
this article is an association analysis under population stratification,
we perform an analysis with lactase-persistence as phenotype rather
than case–control labels for diseases.

We use Structure to learn groupings of individuals according to
populations, before applying structured association methods with
lasso or MPGL. We determine the number of ancestor populations
K based on approximate posterior probabilities, as was suggested in
Pritchard et al. (2000), and obtain K =4 as the optimal number of
ancestor populations. Then, we run k-means algorithm to cluster
the individuals into four populations, based on the admixture
proportions for individuals estimated by structure. Figure 9 shows
the admixture proportions of individuals as columns using four
different colors for each of the four ancestor populations, after
clustering individuals into four groups.

For MPGL as well as the other regression-based methods, the
value of the regularization parameter λ is selected as described
in Section 2.3.2, with 50 individuals in the validation set, and the
remaining 1454 individuals in the training set. Since the phenotype
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Fig. 9. Population structure in the genomic region around gene LCT in
WTCCC dataset. Each column represents the admixture proportion of an
individual estimated by structure. The colors represent different ancestor
populations.
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Fig. 10. Results from association analysis of lactase-persistence dataset.
Association strengths are shown for (a) MPGL, (b) lasso for structured
association, (c) lasso for a pooled analysis of all populations, (d) Eigenstrat
and (e) GC. We plot the absolute values of the regression coefficients in
(a), (b) and (c), and −log(P-value) in (d and e). The locus with the causal
SNP rs4988243 is marked with a green circle at the top of the plot.

is binary, we use MPGL with logistic regression instead of linear
regression.

The association strengths for lactase-persistence estimated by
different methods are shown in Figure 10. In each panel, we mark
the true association SNP rs4988243 as a green circle. As can be
seen in Figure 10a, MPGL correctly identifies SNP rs4988243 as
the sole SNP with a non-zero association with lactase persistence.
In Figure 10b, lasso with structured association also detects the true
causal SNP, although there is one false positive that is also found to
have a non-zero association with the phenotype. We find that lasso
for structured association predicted this SNP to be associated with
the phenotype in one of the populations, but not in the other three
populations. We observe that the lack of signal from this SNP in the

other populations successfully allows MPGL to conclude that there
is no signal, and reject this SNP automatically.

In comparison to these two structured association methods,
lasso that assumes no population structure completely misses the
association signal, as can be seen in Figure 10c. Although in Figure
10d Eigenstrat is able to detect the true causal SNP at P < 0.001,
there are additional 65 SNPs that are also found associated with
lactase persistence. Out of these 65 false positives in Eigenstrat, 52
SNPs are in the highly differentiated subregion near SNP rs4988243,
and the other 13 SNPs are found across the region of 2500 SNPs
that we analyze. Only 8 of the 52 SNPs within the differentiated
region are in a high LD with the true causal SNP (r2 ≥ 0.8).
Thus, Eigenstrat finds significantly greater number of false-positives
due to population stratification than MPGL. We notice that unlike
Eigenstrat, the sparse regression methods in Figures 10a and b are
able to exclude SNPs that are in LD with the true causal SNP and
detect the true causal SNP as the associated SNP. Finally, we find
in Figure 10e that GC has a large number of false positives due to
the large confounding effect produced by the population structure.
Overall, our results in Figure 10 shows that MPGL is a powerful
method that detects association signals with no false positives in the
presence of population stratification, and clearly outperforms the
existing methods.

4 DISCUSSION
In this article, we proposed a multi-population group lasso
using L1/L2 regression for joint association analysis of multiple
populations. Our method assumes that population labels are
known or can be learned from a separate analysis, and performs
an association analysis within each population while borrowing
information across populations. The L1/L2 penalty in our method
allows us to detect population-specific causal alleles as well as
causal alleles that are common across all populations with greater
power and fewer false positives. Our experiments on HapMap-
simulated and lactase-persistence datasets showed that our method
is significantly more powerful than other previous approaches,
and at the same time, can control for population stratification
to reduce spurious associations. Possible future directions include
incorporating geographical and spatial distribution over populations
instead of assuming that all of the populations are jointly related as
in L1/L2 regularization.

Funding: National Science Foundation (DBI-0546594), (DBI-
0640543); National Institutes of Health (1R01GM087694); Alfred
P. Sloan Fellowship (to E.P.X).

Conflict of Interest: none declared.

REFERENCES
Bersaglieri,T. et al. (2004) Genetic signatures of strong recent positive selection at the

lactase gene. Am. J. Hum. Genet., 74, 1111–1120.
Bertsekas,D.P. (1982) Constrained Optimization and Lagrange Multiplier Methods.

Academic Press, Boston.
Devlin,B. and Roeder,K. (1999) Genomic control for association studies. Biometrics,

55, 997–1004.
Devlin,B. et al. (2004) Genomic control to the extreme. Nat. Genet., 36, 1129–1130.
Enattah,N.S. et al. (2002) Identification of a variant associated with adult-type

hypolactasia. Nat. Genet., 30, 233–37.
Epstein,M.P. et al. (2007) A simple and improved correction for population stratification

in case-control studies. Am. J. Hum. Genet., 80, 921–930.

i215

 by on July 14, 2010 
http://bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org


[11:31 12/5/2010 Bioinformatics-btq191.tex] Page: i216 i208–i216

K.Puniyani et al.

Hartigan,J.A. (1975) Clustering Algorithms. John Wiley & Sons, Inc., New York, NY,
USA.

Hastie,T. et al. (2003) The Elements of Statistical Learning. Springer, New York.
Hoggart,C. et al. (2003) Control of confounding of genetic associations in stratified

populations. Am. J. Hum. Genet., 72, 1492–1504.
Hoggart,C.J. et al. (2008) Simultaneous analysis of all snps in genome-wide and

re-sequencing association studies. PLoS Genet., 4, e1000130.
Hubisz,M.J. et al. (2009) Inferring weak population structure with the assistance of

sample group information. Mol. Ecol. Res.
Kimmel,G. et al. (2007) A randomization test for controlling population stratification

in whole-genome association studies. Am. J. Hum. Genet., 81, 895–905.
Malo,N. et al. (2008) Accommodating linkage disequilibrium in genetic-association

analyses via ridge regression. Am. J. Hum. Genet., 82, 375–85.
Meier,L. et al. (2008) The group lasso for logistic regression. J. Roy. Stat. Soc. B, 70,

53–71.
Obozinski,G. et al. (2008) High-dimensional union support recovery in multivariate

regression. In Advances in Neural Information Processing Systems 21. Vancouver,
B.C., Canada.

Price,A.L. et al. (2006) Principal components analysis corrects for stratification in
genome-wide association studies. Nat. Genet., 38, 904–909.

Pritchard,J. et al. (2000) Association mapping in structured populations. Am. J. Hum.
Genet., 67, 170–181.

Purcell,S. and Shamb,P. (2004) Properties of structured association approaches to
detecting population stratification. Hum. Heredity, 58, 93–107.

Shi,W. et al. (2007) Detecting disease-causing genes by LASSO-Patternsearch
algorithm. BMC Proceedings, 1(Suppl. 1), S60.

Shringarpure,S. and Xing,E.P. (2009) mstruct: inference of population structure in light
of both genetic admixing and allele mutations. Genetics, 182, 575–593.

The International HapMap Consortium. (2005) A haplotype map of the human genome.
Nature, 437, 1399–1320.

Tishkoff,S.A. et al. (2006) Convergent adaptation of human lactase persistence in africa
and europe. Nat. Genet., 39, 31–40.

Tomioka,R. and Sugiyama,M. (2009) Dual augmented lagrangian method for efficient
sparse reconstruction. IEEE Signal Proccesing Lett., 16, 1067–1070.

Turlach,B. et al. (2005) Simultaneous variable selection. Technometrics, 47, 349–363.
Wasserman,L. and Roeder,K. (2009) High-dimensional variable selection. Ann. Stat.,

37, 2178–2201.
Wellcome Trust Case Control Consortium. (2007) Genome-wide association study of

14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447,
661–678.

Wu,T.T. et al. (2009) Genome-wide association analysis by lasso penalized logistic
regression. Bioinformatics, 25, 714–721.

Yu,J. et al. (2005) A unified mixed-model method for association mapping that accounts
for multiple levels of relatedness. Nat. Genet., 38, 203–208.

Yuan,M. and Lin,Y. (2006) Model selection and estimation in regression with grouped
variables. J. Roy. Stat. Soc. B, 68, 49–67.

Zhao,P. et al. (2008) Grouped and hierarchical model selection through composite
absolute penalties. Technical Report 703, Department of Statistics, University of
California, Berkeley.

Zhu,X. et al. (2002) Association mapping, using a mixture model for complex traits.
Genetic Epidemiol., 23, 181–196.

i216

 by on July 14, 2010 
http://bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org

