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Abstract

This paper proposes a general probabilistic framework for shape-based modeling and clas-
sification of waveform data. A segmental hidden Markov model (HMM) is used to char-
acterize waveform shape and shape variation is captured by adding random effects to
the segmental model. The resulting probabilistic framework provides a basis for learn-
ing of waveform models from data as well as parsing and recognition of new waveforms.
Expectation-maximization (EM) algorithms are derived and investigated for fitting such
models to data. In particular, the “expectation conditional maximization either” (ECME)
algorithm is shown to provide significantly faster convergence than a standard EM pro-
cedure. Experimental results on two real-world data sets demonstrate that the proposed
approach leads to improved accuracy in classification and segmentation when compared to
alternatives such as Euclidean distance matching, dynamic time warping, and segmental
HMMs without random effects.

Keywords: Waveform recognition, random effects, segmental hidden Markov models,
EM algorithm, ECME.

1. Introduction

Automatically parsing and recognizing waveforms based on their shape has broad applica-
tions, including interpretation and classification of heartbeats in ECG data analysis (Koski,
1996), analysis of waveforms from turbulent flow experiments (Bruun, 1995), and discrimi-
nation of nuclear events and earthquakes in seismograph data (Bennett and Murphy, 1986).
Waveform analysis has also attracted attention in information retrieval and data mining,
with a focus on algorithms that can take a waveform as an input query and search a large
database to find similar waveforms that match the query waveform (e.g., Yi and Faloutsos,
2000). Applications include finding temporal patterns in retail time-series data (Agrawal
et al., 1993) and fault diagnosis in complex systems (Keogh and Smyth, 1997).

While the human visual system can easily recognize the characteristic signature of a
particular waveform shape (a heartbeat waveform for example) the problem can be quite
difficult for automated methods. For example, Figure 1 shows a set of time-series wave-
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Figure 1: Fluid-flow waveform data: (a) a waveform from the class splitting (where the
probe splits a bubble), (b) a set of such waveforms, (c) a waveform from the class
glance, and (d) a set of such waveforms.

forms collected during turbulent fluid-flow experiments where the shape of each waveform is
determined by the nature of interactions between a probe and bubbles in the fluid. Figure
1(a) shows an example waveform from a particular type of interaction. Figure 1(b) shows a
whole set of such waveforms that have all been classified (by human experts) as being of the
same interaction type. Although all of these waveforms belong to the same interaction class,
there is significant variability in shape among those waveforms. The sources of variability
include shifts of the locations of prominent features such as peaks, valleys, and plateaus,
scaling along the time and amplitude axes, and measurement noise. An example waveform
from a different class is shown in Figure 1(c), and a set of such waveforms are shown in
Figure 1(d). Again there is significant within-class variability.

In this paper we address the problem of detecting and classifying general classes of
waveforms based on their shape and propose a new statistical model that directly addresses
within-class shape variability. We will assume in the paper that the waveforms to be ana-
lyzed are in the form of “snippets” that have already been extracted from the “background”
time-series, e.g., in the form of Figures 1(b) and (d). This assumption can be relaxed—we
outline a method for detection of waveforms that are embedded in a time-series in Section
6. We will also assume that the waveforms are being analyzed offline, i.e., that all of the
waveform measurements are available at the time of analysis rather than arriving sequen-
tially in an online fashion. The online sequential detection problem can be addressed by
generalizing the methods we propose, but we do not pursue online algorithms in this paper.
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Figure 2: Waveform models: (a) a piecewise linear approximation of the waveform in Figure
1(a), (b) a segmental HMM best fit, and (c) a random effects segmental HMM
best fit as described in this paper.

We will assume that a set of one or more waveforms from a single class are provided a
priori (e.g., the data in Figures 1(b) or (d)) and from this data we wish to learn a model
for recognition. Hidden Markov models (HMMs) are a broadly useful class of generative
models for waveform modeling, finding application (for example) in heartbeat monitoring
of ECG data (Koski, 1996; Hughes et al., 2003). These models are characterized by (a)
a discrete-time finite-state Markov process which is unobserved, and (b) a set of observed
measurements at each time t which only depend (stochastically) on the state value at time
t. From a shape-modeling viewpoint the standard version of the model generates noisy
versions of piecewise constant shapes over time, since the observations within a sequence of
states of the same value have constant mean. For waveform modeling, a useful extension
is the so-called segmental HMM, originally introduced in the speech recognition (Russell,
1993) and more recently used for more general waveform modeling (Ge and Smyth, 2000).
The segmental model allows for the observed data within each segment (a sequence of states
with the same value) to follow a general parametric regression form, such as a linear function
of time with additive noise. This allows us to model the shape of the waveform directly,
in this case as a sequence of piecewise linear components—Figure 2(a) shows a piecewise
linear representation of the waveform in Figure 1(a).

A limitation of this particular model is that it assumes that the parameters of the model
are fixed. Thus, the only source of variability in an observed waveform arises from variation
in the lengths of the segments and observation noise added to the functional form in each
segment. The limitation of this can clearly be seen in Figure 2(b), where a segmental HMM
has been trained on the data in Figure 1(b) and then used to generate maximum-likelihood
estimates of segment boundaries, slopes, and intercepts for the new waveform in Figure 2(b).
We can see that the best-fit slopes and intercepts provided by the model do not match the
observed data particularly well in each segment, e.g., in the first segment the intercept is
clearly too low on the y-axis, in the second segment the slope is too small, and so forth.
By using the same fixed parameters for all waveforms, the model cannot fully account for
variability in waveform shapes (e.g., as seen in Figure 1(b)).

To address this limitation, in this paper we combine segmental HMMs with random
effects models. The general idea of random effects is to allow each group of observations
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(or each waveform) to have its own parameters that are still coupled together by an overall
population prior (Laird and Ware, 1982). By extending the segmental HMM to include
random effects, we can allow the slopes and intercepts within each segment of each waveform
to vary according to a prior distribution. As illustrated in Figure 3, in the hierarchical setup
of our model each waveform (at the bottom level) has its own slope and intercept parameters
(as shown at the middle level) that come from a shape template (at the top level) modeled as
a population prior. The parameters of this prior can be learned in an unsupervised manner
from data in the form of sets of waveforms. The resulting model can be viewed as a directed
graphical model, allowing for application of standard methods for inference and learning
(Jordan, 1999; Murphy, 2002). For example, we can in principle learn that the slopes
across multiple waveforms for the first segment in Figure 1(b) tend to have a characteristic
mean slope and standard deviation. The random effects approach provides a systematic
mechanism for allowing variation in “shape space” in a manner that can be parametrized.
Figure 2(c) shows a visual example of how a random effects model (constructed from the
training data in Figure 1(b)) is used to generate maximum-likelihood estimates of segment
boundaries and segment slopes and intercepts for the waveform in Figure 1(a).

Kim et al. (2004) described preliminary results using random effects segmental HMMs for
waveform parsing and recognition. A drawback of this earlier approach is the relatively slow
convergence of the expectation-maximization (EM) algorithm in learning. This is a result
of the large amount of missing information present (due to the random effects component of
the model), compared to a standard segmental HMM. In this paper we use the “expectation
conditional maximization either” (ECME) algorithm (Liu and Rubin, 1994) for parameter
estimation of random effects segmental HMMs. This dramatically speeds up convergence
relative to the EM algorithm, making the model much more practical to use for real-world
waveform recognition problems.

We begin our discussion by reviewing related work on segmental HMMs and random
effects models in Section 2. We introduce segmental HMMs in Section 3. In Section 4,
we extend this model to incorporate random effects models, and describe the inference
procedure and the EM algorithm for parameter estimation. We also show that the ECME
algorithm can be used to significantly speed up the convergence of the EM algorithm. In
Section 5, we evaluate our model on two applications involving bubble-probe interaction
data and ECG data, and compare random effects segmental HMMs to other waveform-
matching algorithms such as Euclidean distance matching, dynamic time warping, and
segmental HMMs without random effects. Section 6 contains a brief discussion of possible
extensions of the model and final conclusions.

2. Related Work and Contributions

A general approach to waveform recognition is to extract characteristic features from the
waveform in the time-domain or the frequency-domain, and then perform classification in
the resulting feature-vector space. Examples of this approach include the work of Shimshoni
and Intrator (1998) who used neural networks to classify seismic waveforms, and Jankowski
and Oreziak (2003) who used support vector machines to classify heartbeats in ECG data.
Using classifiers in this manner requires training data from both positive and negative
classes as well as the extraction of reliable discriminative features from the raw waveform
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data. In the approach described in this paper we avoid these requirements by learning
models from the positive class only and by modeling the waveform directly in the time-
domain without any need for feature extraction. Other techniques have been pursued in
the area of waveform query-matching for information retrieval involving time-series data
(e.g., Agrawal et al., 1993; Chan and Fu, 1999; Keogh and Pazzani, 2000; Yi and Faloutsos,
2000). These approaches generally focus on the investigation of robust and computationally
efficient similarity measures. In contrast, in this paper, we focus on a generative model
approach, allowing techniques from statistical learning to be brought to bear. This allows
us (for example) to learn models from data, to handle within-class waveform variability,
and to generate maximum-likelihood segmentations of waveforms.

As mentioned in Section 1, standard discrete-time finite-state HMMs are not ideal for
modeling waveform shapes since the generative model implicitly assumes a geometric distri-
bution on segment lengths and a piecewise constant shape model. Segmental HMMs relax
these modeling constraints by allowing (a) arbitrary distributions on run lengths, and (b)
“segment models” (regression models) that allow the mean to be a function of time within
each segment. HMMs that allow arbitrary distributions on run lengths (the semi-Markov
property in a HMM context) were introduced in the work of Ferguson (1980), Russell and
Moore (1985), and Levinson (1986). Deng et al. (1994) and Russell (1993) extended these
models to segmental HMMs by modeling dependencies between observations from the same
state with a parametric trajectory model that changes over time. Ostendorf et al. (1996)
reviewed variations of segmental HMMs from a speech recognition perspective. More recent
work includes Achan et al. (2005) and Yun and Oh (2000). Ge and Smyth (2000) introduced
the idea of using segmental HMMs for general waveform recognition problems.

The idea of using random effects with segmental HMMs to model parameter variability
across waveforms is implicit in the speech recognition work of both Gales and Young (1993)
and, later, Holmes and Russell (1999). This work can be viewed as precursors to the
more general random effects segmental HMM framework we present in this paper. Gales
and Young (1993) used a model with a constant mean per segment, but where the mean
values themselves come from a distribution, allowing modeling of variability across different
individual speakers. Holmes and Russell (1999) extended this idea to use a linear regression
function instead of a constant mean for each segment with a Gaussian prior on the regression
parameters (slope and intercept) for each segment. In earlier work (Kim et al., 2004),
we noted that Holmes and Russell’s model could be formalized within a random effects
framework, and derived a more general EM framework for such models, taking advantage
of ideas developed separately in speech recognition and in statistics.

In the statistical literature there is a significant body of work on modeling a hierarchical
data-generating process with a random effects model and estimating the parameters of this
model (Searle et al., 1992). Dempster et al. (1977) sketched the EM algorithm for finding
maximum-likelihood estimates for parameters of random effects models. This algorithm
was further developed by Dempster et al. (1981), Laird and Ware (1982), and Laird et al.
(1987). There appears to be no work in the statistical literature on applying random effects
to segmental HMMs.

In this context, the primary contribution of this paper is a general framework for random-
effects segmental hidden Markov models. We demonstrate how such models can be used for
waveform modeling, recognition, and segmentation, with experimental comparisons of the
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random effects approach with alternative methods such as dynamic time warping, using two
real-world data sets. We extend earlier approaches for learning the parameters of random
effects segmental HMMs by deriving a provably correct EM algorithm with monotonic
convergence. Both Gales and Young (1993) and Holmes and Russell (1999) derived EM-like
optimization algorithms, but their M steps are not in a closed form and use approximate
solutions—thus, the monotonic convergence property of EM is not guaranteed in general
using their approaches.

We further extend the standard EM algorithm to develop an ECME algorithm for fitting
random effects segmental HMMs. The ECME approach significantly reduces the number of
iterations required for convergence, relative to EM, while increasing the time complexity per
iteration only slightly. For example, as we will discuss later, ECME led to a time-savings
of 3 orders of magnitude over the standard EM approach in our experiments. We derive
a computationally efficient inference algorithm (applicable to both EM and ECME) that
reduces the time complexity of the forward-backward algorithm by a factor of T 2, where
T is the length of a waveform. We also show that this inference algorithm can be applied
to full covariance models rather than assuming (as in Holmes and Russell, 1999) that the
intercept and slope in the segment distribution are conditionally independent. Since the
inference algorithm is used in each iteration of the E step in the EM and ECME iterations,
this significantly reduces the overall time complexity of each iteration of EM and ECME.

3. Segmental HMMs

A segmental HMM with M states is described by an M×M transition matrix, a probability
distribution over duration for each state, and a segment model for each state. The transition
matrix A (assumed here to be stationary in time) has entries akl, namely, the probability
of being in state l at time t + 1 given state k at time t. The initial state distribution can be
included in A as transitions from a special state 0 to each state k = 1, . . . ,M . In waveform
modeling, we typically constrain the transition matrix to allow only left-to-right transitions
and do not allow self-transitions. Thus, there is an ordering on states, each state can be
visited at most once, and states can be skipped.

In this paper, we model the duration distribution of state k using a Poisson distribution,

P (d − 1|λk) =
e−λkλk

d−1

(d − 1)!
d = 1, 2, . . .

(shifted to start at d = 1 to prevent a silent state). Other choices for the duration distribu-
tion could also be used (e.g., Ferguson, 1980; Levinson, 1986). Once the process enters state
k, a duration d is drawn, and state k produces a segment of observations of length d from
the segment distribution model. In this paper we focus on models with linear functional
forms within each segment. We model the rth segment of observations of length d, yr,
generated by state k, as a linear function of time,

yr = Xrβk + er er ∼ Nd(0, σ2Id), (1)

where βk is a 2× 1 vector of regression coefficients for the intercept and slope, er is a d× 1
vector of Gaussian noise with variance σ2 for each component, and Xr is a d × 2 design
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matrix consisting of a column of 1’s (for the intercept term) and a column of x values
representing discrete time values.

In speech recognition using the mid-point of a segment as a parameter in the model in-
stead of intercept has been shown to lead to better speech recognition performance (Holmes
and Russell, 1999). Nonetheless, parametrization of the model via the intercept worked
well in our experiments, and for this reason we use the intercept in the models discussed in
this paper. For simplicity, σ2 is assumed to be common across all states; again this can be
relaxed. We do not enforce continuity of the mean functions (Equation (1)) across segments
in the probabilistic model. However, as reported in Section 5, the model without continuity
constraints worked well on real-world data in our recognition experiments.

Treating the unobserved state sequences as missing, we can estimate the parameters,
θ = {A,Λ = {λk|k = 1, . . . ,M}, θf = {βk, (σ

2)|k = 1, . . . ,M}}, using the EM algorithm,
with the forward-backward (F-B) algorithm as a subroutine for inference in the E step (Deng
et al., 1994). The F-B algorithm for segmental HMMs, modified from that of standard
HMMs to take into account the duration distribution, recursively computes

αt(k) = P (y1:t, state k ends at t|θ)

α∗
t (k) = P (y1:t, state k starts at t + 1|θ) (2)

in the forward pass, and

βt(k) = P (yt+1:T |state k ends at t,θ)

β∗
t (k) = P (yt+1:T |state k starts at t + 1,θ) (3)

in the backward pass, and returns the results to the M step as a set of sufficient statistics
(Rabiner and Juang, 1993).

Inference algorithms for segmental HMMs provide a natural way to evaluate the perfor-
mance of the model on test data. The F-B algorithm scores a previously unseen waveform
y by calculating the likelihood

p(y|θ) =
∑

s

p(y, s|θ) =
∑

k

αT (k), (4)

where s represents a sequence of unknown state labels for observations y. The Viterbi
algorithm can provide a segmentation of a waveform by computing the most likely state
sequence (e.g., Figure 2(b)). The addition of duration distributions in segmental HMMs
increases the time complexity of both the F-B and Viterbi algorithms from O(M2T ) for
standard HMMs to O(M2T 2), where T is the length of the waveform (i.e., the number of
observations).

4. Segmental HMMs with Random Effects

A random effects model is a general statistical framework when the data generation pro-
cess has a hierarchical structure, coupling a population-level model with individual-level
variation. At each level of the generative process, the model defines a prior distribution
over the individual group parameters, called random effects, of one level below. The ob-
served data are generated at the bottom of the hierarchy, given parameters drawn from
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Figure 3: A visual illustration of the random effects segmental HMM, using fluid-flow wave-
form data as an example (as described in Section 5.1). The top level shows the
population level parameters βk’s for the waveform shape. The plots at the bottom
level consist of observed data. The plots in the middle level show the posterior
estimates (combining both the data and the prior) of ûi and ŝi, using Equation
(8) and the Viterbi algorithm respectively.

the prior distribution one level above. Typically, the random effects are not observable, so
the EM algorithm is a popular approach to learning model parameters from the observed
data (Dempster et al., 1981; Laird and Ware, 1982). By combining segmental HMMs and
random effects models we can take advantage of the strength of each in waveform modeling.
Random effects models add one level of hierarchy to the probabilistic structure of segmental
HMMs, defining a population distribution over the possible shapes of waveform segments.
Instead of requiring all waveforms to be modeled with a single set of parameters, individual
waveforms are allowed to have their own parameters but coupled by a common population
prior across all waveforms.

4.1 The Model

Beginning with the segmental HMMs described in Section 3, we add random effects via a
new variable ui

r to the segment distribution part of the model as follows. Consider the rth
segment yi

r of length d from the ith individual waveform yi generated by state k. Following
the discussion in Laird and Ware (1982), we describe the generative model as a two-level
process. At the bottom level, we model the observed data yi

r as

yi
r = Xi

rβk + Xi
ru

i
r + ei

r ei
r ∼ Nd(0, σ2Id), (5)

where ei
r is the measurement noise, Xi

r is a d× 2 design matrix for the time measurements
corresponding to yi

r, (βk + ui
r) are the regression coefficients, and 1 ≤ i ≤ N (for N

waveforms). βk represents the mean regression parameters for segment k, and ui
r represents

the variation in regression (or shape) parameters for the ith individual waveform. At this
level, the individual random effects ui

r as well as βk and σ2 are viewed as parameters. At
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the top level, ui
r is viewed as a random variable with distribution

ui
r ∼ N2(0,Ψk), (6)

where Ψk is a 2 × 2 covariance matrix, and ui
r is independent of ei

r. Notice that this
model described by Equations (5) and (6) is equivalent to having yi

r = Xi
rβ

i
r + ei

r with
βi

r ∼ N2(βk,Ψk). It can be shown that yi
r and ui

r have the following joint distribution:

(

yi
r

ui
r

)

∼ Nd+2

(

(

Xi
rβk

0

)

,

(

Xi
rΨkX

i
r
′
+ σ2Id Xi

rΨk

ΨkX
i
r
′

Ψk

) )

. (7)

Also, from Equation (7), the posterior distribution of ui
r can be written as

ui
r|y

i
r,βk,Ψk, σ

2 ∼ N2

(

ûi
r,Ψûi

r

)

, (8)

where

ûi
r = (Xi

r
′
Xi

r + σ2(Ψk)
−1)−1Xi

r
′
(yi

r −Xi
rβk), (9)

and

Ψûi
r

= σ2(Xi
r
′
Xi

r + σ2(Ψk)
−1)

−1
. (10)

In the discussion that follows we use ui to denote {ui
r|r = 1, . . . , R} given the segmentation

si of waveform yi into R segments. Similarly, ûi represents {ûi
r|r = 1, . . . , R}, given the

segmentation ŝi of waveform yi found by the Viterbi algorithm.
Figure 3 conceptually illustrates the hierarchical setup of the model. The shape template

described by the population parameters βk’s is shown at the top of the hierarchy. The plots
at the bottom level consist of observed data. The plots at the middle level show the posterior
estimates (combining both the data and the prior) of ûi and ŝi, using Equation (8) and the
Viterbi algorithm respectively. From a generative model perspective, the shape templates
in the middle row, (βk + ui

r)’s, i = 1, . . . , 5, are generated from the mean shape at the top
level by Equation (6). The observed data at the bottom of the hierarchy are modeled as
noisy realizations of these individual shape templates. This final data generation process is
modeled in Equation (5).

Figure 4 shows plate diagrams for the segment distribution part of segmental HMMs
and random effects segmental HMMs, illustrating the generative process for N waveforms,
y1, . . . ,yN , under the simplifying assumption that each waveform comes from a single
segment of length D corresponding to state k.

4.2 Inference

To handle the random effects component in the F-B and Viterbi algorithms for segmental
HMMs, we notice from Equation (7) that the marginal distribution of a segment yi

r gener-
ated by state k is Nd(X

i
rβk, Xi

rΨkX
i
r
′
+ σ2Id), and that this corresponds to Equation (1)

with the covariance matrix σ2Id replaced by (Xi
rΨkX

i
r
′
+ σ2Id). Replacing the two-level

segment distribution with this marginal distribution, and collapsing the hierarchy into a
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Figure 4: Plate diagrams for the segment distribution part of segmental HMMs and random
effects segmental HMMs. (a) segment model in segmental HMMs, (b) a two-stage
model with random effects parameters in random effects segmental HMMs, and
(c) the model after integrating out random effects parameters from (b).

single level, we can use the same F-B and Viterbi algorithm as in segmental HMMs in the
marginalized space over the random effects parameters ui.

The F-B algorithm recursively computes the quantities in Equations (2) and (3). These
are then used in the M step of the EM algorithm. The likelihood of a waveform y, given
fixed parameters θ = {A,Λ,θf = {βk,Ψk, (σ

2)|k = 1, . . . ,M}}, but with states s and
random effects u unknown, is evaluated as

p(y|θ) =
∑

s

∫

p(y, s,u|θ)du (11)

=
∑

s

p(y, s|θ) =
∑

k

αT (k).

As in segmental HMMs, the Viterbi algorithm can be used as a method to segment a
waveform by computing the most likely state sequence.

What appears to make the inference in random effects segmental HMMs computationally
much more expensive than in segmental HMMs is the inversion of the d × d covariance
matrix of the marginal segment distribution, Xi

rΨkX
i
r
′
+ σ2Id, during the evaluation of the

likelihood of a segment. For example, in the F-B algorithm, the likelihood of a segment yi
r

of length d given state k, p(yi
r|βk,Ψk, σ

2), needs to be calculated for all possible durations
d in each of the αt(k) and βt(k) expressions at each recursion. Naive computation of a
segment likelihood, using direct inversion of the d × d covariance matrix, requires O(T 3)
computations, where T is the upper bound for d, leading to an overall time complexity of
O(M2T 5). This can be computationally impractical for long waveforms with a large value
of T (for example, T = 256 for the fluid-flow data shown in Figure 1(a)).

In the case of a simpler model with a diagonal covariance matrix for Ψk, Holmes and
Russell (1999) derived a method for computing the segment likelihood with time complexity
O(M2T 3). We obtain the same complexity for a more general case with an arbitrary
covariance matrix as follows. In discussing computational issues for random effects models,

10



Segmental Hidden Markov Models with Random Effects

Dempster et al. (1981) suggested an expression for the likelihood that is simple to evaluate.
Applying their method to the segment distribution of our model, we rewrite, using Bayes’
rule, the likelihood of a segment yi

r generated by state k as

p(yi
r|βk,Ψk) =

p(yi
r,u

i
r|βk,Ψk, σ

2)

p(ui
r|y

i
r,βk,Ψk, σ2)

,

where the numerator and the denominator of the right-hand side are given as Equations
(7) and (8), respectively. The right-hand side of the above equation holds for all values of
ui

r. By setting ui
r to ûi

r as in Equation (9), we can simplify the expression for the segment
likelihood to

p(yi
r|βk,Ψk) = (2π)−d/2σ−d|Ψûi

r
|1/2/|Ψk|

1/2exp(−Si
r/(2σ

2)), (12)

where

Si
r = (yi

r − Xi
rβk − Xi

rû
i
r)

′(yi
r − Xi

rβk − Xi
rû

i
r) + σ2ûi

r
′Ψ

(−1)
k ûi

r.

This can be further simplified using Equation (9):

Si
r = (yi

r − Xi
rβk)

′(yi
r − Xi

rβk − Xi
rû

i
r).

Equation (12) has a form that involves only O(d) computations for each step, where pre-
viously this involved O(d3) computations in the case of the naive approach with matrix
inversions. Thus, the time complexities of the F-B and Viterbi algorithms are reduced to
O(M2T 3). For segmental HMMs this computational complexity can be further reduced
to O(M2T 2) by precomputing the segment likelihood and storing the values in a table
(Mitchell et al., 1995). However, this precomputation is not possible with random effects
models, leading to the additional factor of T in the complexity term.

4.3 Parameter Estimation

In this section, we describe how to obtain maximum-likelihood estimates of the parameters
from a training set of multiple waveforms for a random effects segmental HMM using the
EM algorithm. We augment the observed waveform data with both (a) state sequences and
(b) random effects parameters (both are considered to be hidden). The log likelihood of the
complete data of N waveforms, Dcomplete = (Y,S,U) = {(y1, s1,u1), . . . , (yN , sN ,uN )},
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where the state sequence si implies Ri segments in waveform yi, is defined as:

log L(θ|Dcomplete) =
N
∑

i=1

log p(yi, si,ui|A,Λ,θf )

=

N
∑

i=1

Ri

∑

r=1

log P (si
r|s

i
r−1,A) (13a)

+
N
∑

i=1

Ri

∑

r=1

log P (di
r|λk, k = si

r) (13b)

+

N
∑

i=1

Ri

∑

r=1

log p(yi
r|u

i
r,βk, σ

2, k = si
r, d

i
r) (13c)

+
N
∑

i=1

Ri

∑

r=1

log p(ui
r|Ψk, k = si

r). (13d)

As we can see from the above equation, given the complete data, the log-likelihood decouples
into four parts Equations (13a)-(13d), where the transition matrix, the duration distribution
parameters, the bottom level parameters βk, σ

2, and the top level random effect parameters
ui

r appear in each of the four terms. If we had complete data, we could optimize the four
sets of parameters independently. When only parts of the data are observed, by iterating
between the E step and the M step in the EM algorithm as described below, we can find a
solution that locally maximizes the likelihood of the observed data.

4.3.1 E Step

In the E step, we find the expected log likelihood of the complete data,

Q(θ(t),θ) = E[log L(θ|Dcomplete)], (14)

with respect to

p(S,U|Y,θ(t)) = p(U|S,Y,θ(t))P (S|Y,θ(t))

=
N
∏

i=1

Ri

∏

r=1

p(ui
r|s

i
r = k,yi

r,θ
(t))P (si

r = k|yi
r,θ

(t)), (15)

where θ(t) is the estimate of the parameter vector from the previous M step of the tth EM
iteration. P (si

r = k|yi
r,θ

(t)) in Equation (15) can be obtained from the F-B algorithm.

The sufficient statistics, E
[

ui
r|s

i
r = k,Y,θ(t)

]

and E
[

ui
ru

i
r
′
|si

r = k,Y,θ(t)
]

, for P (ui
r|s

i
r =

k,yi
r,θ

(t)) in Equation (15) can be directly obtained from Equations (9) and (10). The time
complexity for an E step is O(M2T 3N) where N is the number of waveforms (and assuming
each waveform is of length T ).

4.3.2 M Step

In the M step, we find the values of the parameters that maximize Equation (14). As we
can see from Equations (13a)-(13d) and (14), the optimization problem decouples into four
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Figure 5: Example of training data log-likelihood convergence as a function of the number
of EM iterations, for fluid-flow waveform data, comparing segmental HMMs (on
the left) and random effects segmental HMMs (on the right), both using the EM
algorithm, x-axis on a log-scale.

parts, each of which involves a distinct set of parameters. Closed form solutions exist for
all of the parameters (the equations are included in Appendix A). The time complexity for
each M step is O(MT 3N).

In practice, the algorithm often converges relatively slowly, compared to segmental
HMMs, due to the additional missing information in random effects parameters U. Figure
5 shows a typical run of the algorithm. The segmental HMM converges much faster but
converges to a lower log-likelihood value. The iterations were halted when the increase of
the log-likelihood from one iteration to the next was less than 10−5.

Holmes and Russell (1999) augmented the observed waveform data with state sequences
after integrating out the random effects parameters, and used Dcomplete = {Y,S} in the E

step. In this case the parameters for the segment distribution {βk, σ
2,Ψk} do not decouple

in the complete data log-likelihood and there is no closed form solution for those parameters
in the M step. Using the approximate solutions proposed in Holmes and Russell means that
the monotonic convergence property of EM is no longer guaranteed. In contrast, if we use
Dcomplete = {Y,S,U} in the E step as in Equation (14), we can ensure that the algorithm
is a proper EM algorithm that always converges to a local maximum of log likelihood.

4.4 Faster Learning with ECME

As mentioned above, the convergence of the EM algorithm can be very slow especially in
the estimation of random effects models. Various extensions of the algorithm have been pro-
posed to speed up the convergence. In the expectation conditional maximization (ECM)
algorithm Meng and Rubin (1993) replaced the M step of the EM algorithm with a sequence
of W > 1 constrained or conditional maximizations (the CM steps). This does not necessar-
ily decrease the number of EM iterations but can significantly reduce the total computation
time. Liu and Rubin (1994) further extended the ECM algorithm to the ECME algorithm,
reducing both the number of iterations and the total computation time. Both the ECM and
the ECME algorithms preserve the property of monotone convergence of the EM algorithm.
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Figure 6: Example of training data log-likelihood convergence as a function of the number
of iterations (on the left) and as a function of computation time (on the right),
for fluid-flow waveform data (the same data set as in Figure 5), comparing EM
vs. ECME for the random effects segmental HMM, x-axis on a log-scale.

More specifically, the CM step of the tth iteration of the ECM algorithm consists of W
CM steps. The wth CM step maximizes Q(θ(t),θ) under the constraint

gw(θ) = gw(θ(t+(w−1)/W )),

where θ(t+w/W ) denotes the value of θ in the wth CM step of the (t + 1)th iteration and
C = {gw(θ), w = 1, . . . ,W} is a set of W preselected vector functions. These constraints are
set so that the maximization is over the full parameter space of θ. In a typical application
of the ECM algorithm the set of parameters θ is divided into W subvectors θ1, . . . ,θW and
in the wth CM step of the tth iteration Q(θ(t),θ) is maximized over θw. In this case gw(θ)
is equal to θ−w, the vector of all parameters except for θw. In all of the following discussion
we assume gw(θ) has this particular form.

In the ECME algorithm some of the CM steps of the ECM algorithm are replaced by
a maximization of the actual log likelihood subject to the same constraint instead of the
expected complete data log likelihood. The large amount of missing information present in
the expected complete data log likelihood leads to slow convergence of the EM algorithm
(Dempster et al., 1977). The ECME algorithm often speeds up the convergence dramatically
by removing the missing information altogether and maximizing the actual log likelihood
in some of the CM steps.

Laird and Ware (1982) first derived an ECME algorithm for random effects models
but mistakenly thought it was the EM algorithm. Liu and Rubin (1994) gave a formal
description of the ECME algorithm and introduced two different versions of the algorithm
for random effects models. The first version has a closed form solution in the CM steps.
The other requires an iterative algorithm for one of CM steps, and loses the monotone
convergence property of the EM algorithm. Liu and Rubin report slightly faster convergence
from the latter, but in our application of the ECME algorithm to random effects segmental
HMMs we use the first version with closed form CM steps, thus, retaining the monotone
convergence property of EM.
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Figure 7: Convergence of β (x-axis is intercept, y-axis is slope) for fluid-flow data. The
starting point is indicated by a circle. Gray arrows represent ECME, black arrows
represent EM. An arrow for the parameter values is drawn for each iteration in
ECME and for every 100 iterations in EM.

For random effects segmental HMMs we partition the parameters θ into θ1 = {A,Λ,Ψk,
σ2|k = 1, . . . ,M} and θ2 = {βk|k = 1, . . . ,M} and consider the ECME algorithm with
two CM steps for each of the two partitions as follows.

CM step 1: Compute A(t+1), Λ(t+1), Ψ
(t+1)
k , k = 1, . . . ,M , and (σ2)(t+1) as in the M

step of the EM algorithm.

CM step 2: Given Ψ
(t+1)
k , k = 1, . . . ,M , and (σ2)(t+1) obtained from CM Step 1, we can

integrate out ui from Equations (13c)-(13d), and maximize
∑N

i=1

∑Ri

r=1 log p(yi
r|βk,

Ψ
(t+1)
k , (σ2)(t+1), k = si

r, d
i
r), where p(yi

r|βk,Ψ
(t+1)
k , (σ2)(t+1), k = si

r, d
i
r) is given as

Nd(X
i
rβk, Xi

rΨ
(t+1)
k Xi

r
′
+ (σ2)(t+1)Id).

The update equations for β
(t+1)
k , k = 1, . . . ,M are

β
(t+1)
k =

(

∑N
i=1

P
t

P
d<t

Ciktd(Xi
td

′

Zi
td

Xi
td

)

P (yi|θ
(t)

)

)−1

·

(

∑N
i=1

P
t

P
d<t

Ciktd(Xi
td

′

Zi
td

yi
td

)

P (yi|θ
(t)

)

)

,

where Xi
td = Xi

t−d+1:t and

Zi
td = (Xi

tdΨ
(t+1)
k Xi

td
′
+ (σ2)(t+1)Id)

−1.
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When d is large we can avoid inverting a d× d matrix to obtain Zi
td by rewriting this

as

Zi
td = {Id − Xi

td((σ
2)(t+1)(Ψk)

−1 + Xi
td
′
Xi

td)
−1Xi

td
′
}/(σ2)(t+1).

CM step 1 maximizes the expected complete data log likelihood where both state se-
quences S and random effects parameters U are considered missing. In CM step 2 the
incomplete data log likelihood is augmented only with S and then maximized. The compu-

tational complexity of the update equation for β
(t+1)
k in CM step 2 is O(MT 4N) compared

to O(MT 3N) for the same parameter in the M step of the EM algorithm. Thus, the over-
all asymptotic complexity for the CM steps is O(MT 4N), and the ECME algorithm is
computationally more expensive in time complexity per iteration than the EM algorithm.

The convergence of the EM and the ECME algorithms for a random effects segmental
HMM with six states is shown in Figure 6 for the fluid-flow waveform data described in
Section 5.1. The parameters were initialized to the same values for both algorithms and the
convergence criterion was set to 10−5. In Figure 6(a) the EM algorithm takes 11506 iter-
ations to converge to roughly the same log-likelihood that the ECME algorithm converges
to in only 8 iterations. Each iteration takes 133.3s in the ECME algorithm, versus 47.4s
in the EM algorithm, but the overall time to convergence of ECME is still over 3 orders of
magnitude faster than EM (as shown in Figure 6(b)).

The convergence trajectories of the 2-dimensional parameters βk for both algorithms are
shown in Figure 7 for each of the six states. The starting values are shown as black circles.
Black arrows represent the parameter values of every 100 iterations in the EM algorithm
and grey arrows represent the parameters in every iteration of the ECME algorithm. Both
Figure 6 and Figure 7 show a dramatic improvement in the speed of convergence of ECME
over EM: they both converge to the same solutions in parameter space but ECME converges
much more quickly.

5. Experiments

We apply our model to two real-world data sets: (a) hot-film anemometry data in turbulent
bubbly fluid-flow and (b) ECG heartbeat data: both are described in more detail below in
Section 5.1. In all of our experiments we compare the results from our new segmental HMM
with random effects to those obtained using segmental HMMs without random effects. We
use several methods to evaluate the models:

Average LogP Score: We compute log p(y|θ) scores (Equations (4) and (11) for each
model) for test waveforms y to compare how much probability is assigned to new test
data by different models. Higher logP scores indicate better predictive power.

Segmentation Quality: To evaluate how well the model can segment test waveforms, we
first obtain the segmentations of test waveforms with the Viterbi algorithm, estimate
the regression coefficients γ̂ of each segment, and calculate the mean squared difference
between the observed data and Xγ̂. Good segmentations should produce low scores.

Recognition Accuracy: We use the model learned from a training set of positive exam-
ples to recognize waveforms of interest from a test set with both positive and negative
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Figure 8: Negative examples in bubble-probe interaction data. (a) no interaction (b) glanc-
ing (c) bouncing (d) penetrating.
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Figure 9: Negative examples in ECG data (a) right bundle branch block beat (b) left bundle
branch block beat (c) paced beat (d) premature ventricular contraction beat.

exemplars. We compare the results from random effects segmental HMMs with those
from dynamic time warping (Keogh and Pazzani, 2000), Euclidean distance matching,
and segmental HMMs.

All of the experiments were conducted using cross-validation. The number of segments
M for each data set was determined by visual inspection prior to training the models. All
waveforms were shifted to have zero mean amplitude before training and testing.

In all experiments reported below, we use the ECME algorithm for training random
effects segmental HMMs. The convergence criterion is set to 10−5. We found in our exper-
iments that providing one manually-segmented example is useful in initialization of both
EM and ECME—details on initialization are described in Appendix B.

5.1 Data Sets

Below we describe two different data sets that were used as the basis for our experiments.

5.1.1 Bubble-probe Interaction Data

Hot-film anemometry is a technique commonly used in turbulent bubbly flow measure-
ments in fluid physics. Different types of interactions between the bubbles and the probe
in turbulent gas flow, such as splitting, bouncing, and penetration, lead to characteristic
waveform shapes. Automatically detecting the occurrence and types of interactions from
such waveforms is a problem of active interest (Bruun, 1995). This recognition task is dif-
ficult because of the large variability in the shapes of waveforms within a given class of
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Bubble-probe ECG
interaction data data

Avg. Avg. Avg. Avg.
LogP Segmentation LogP Segmentation
Score Error Score Error

Segmental HMMs -3.25 15.39 -3.12 2.55
Random Effects Segmental HMMs 4.50 1.43 19.63 0.39

Table 1: Average logP scores and segmentation errors for bubble-probe interaction data
and ECG data.

interactions (e.g., Figure 1(b)), caused by various factors such as velocity fluctuations and
different gas fractions during measurement.

We applied our method to individual bubble-probe interaction data. Our data set
consisted of 7 waveforms in the class no interaction (Figure 8(a)), 5 waveforms in the class
glancing (Figure 8(b)), 52 waveforms in the class bouncing (Figure 8(c)), 8 waveforms in
the class penetration (Figure 8(d)) and 48 waveforms in the class splitting (Figures 1(a)
and (b)). Class labels were determined for each interaction based on expert examination
of high-speed image recordings of the event obtained simultaneously with the interaction
signal (Luther, 2004). Each waveform had 256 data points sampled at 5kHz. We built
waveform models for the class of splitting interactions, where the probe splits the bubble,
and ran a 9-fold cross-validation with 5 waveforms in the training set and 43 waveforms
in the test set for each run. The 72 waveforms from the other interactions were used as
negative examples in the test set. Given that Figure 2(a) is a reasonable piecewise linear
approximation of the general shape, we subjectively chose M = 6 as the number of states
for both segmental HMMs and random effects segmental HMMs.

5.1.2 ECG Data

The shape of heartbeat cycles in ECG data can be used to diagnose the heart condition of a
patient (Koski, 1996; Hughes et al., 2003). For example, Figure 11 shows the typical shape
of normal heartbeats, whereas Figures 9(a)-(d) are taken from a heart experiencing various
abnormal conditions. Heartbeats of the same type can vary significantly across individuals
in terms of the heights and locations of peaks in the shape. Variability can also be found
among heartbeats from the same individual although it is lower than across individuals.

For our experiments we used the ECG recordings with a sampling rate of 360 samples per
second from the MIT-BIH Arrhythmia database1. We selected hour long recordings from 23
subjects and manually extracted two heartbeats of the same type from each subject. Normal
heartbeats were taken from each of twelve subjects, and similarly, left bundle branch block
beats from three subjects, right bundle branch block beats from two subjects, premature
ventricular contraction beats from three subjects, and paced beats from three subjects.
The lengths of heartbeats varied approximately from 210 to 410 samples. We modeled each
normal heartbeat with M = 9 segments. We performed a 4-fold cross-validation with 6

1. http://www.physionet.org/physiobank/database/mitdb/
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Top 10 Top 20

Euclidean distance (using mean distance) 86.7 81.7
Euclidean distance (using minimum distance) 82.2 80.0
Dynamic time warping (using mean distance) 85.6 82.2
Dynamic time warping (using minimum distance) 92.2 82.8
Segmental HMMs 86.7 82.2
Random Effects Segmental HMMs 100.0 95.0

Table 2: Cross-validated recognition accuracy for bubble-probe interaction data on test set.
The numbers represent the true positive rates in percentages (%) among the top
k waveforms selected by each algorithm.

normal waveforms from three individuals as a training set for each cross-validation run and
the remainder as a test set. Note that the test set contained heartbeats from a different set
of individuals than the individuals used to train the model. Segmental HMMs could not
be learned for one of the cross-validation runs due to numerical instability (a problem that
did not occur with random effects HMMs), so we report results from the remaining three
runs of cross-validations for segmental HMMs. The 22 abnormal heartbeats were used as
negative examples for the evaluation of recognition accuracy in the test sets.

5.2 Results

In Table 1 we compare the average logP scores of positive test waveforms for segmental
HMMs with those for random effects segmental HMMs. The new model produces signif-
icantly higher scores for both data sets, indicating that random effects allow segmental
HMMs to capture both the typical shape and shape variability.

Table 1 also shows the average segmentation errors for the test waveforms from both
models. Adding the random effects component to segmental HMMs reduces the segmenta-
tion error roughly by a factor of 10 on both data sets. Segmentation examples are shown in
Figure 10 for the bubble-probe interaction data and Figure 11 for the ECG data, where it
is apparent that random effects segmental HMMs are more consistent in locating segment
boundaries.

To evaluate the recognition accuracy we score both pattern and non-pattern waveforms
in the test set using the model for the pattern waveform learned from the training set, and
rank the waveforms according to their log probability scores. We also compare probabilistic
methods with non-probabilistic scoring methods such as Euclidean distance and dynamic
time warping. For non-probabilistic methods we compute the distance between a test
waveform and each of the N training waveforms, and use both the average and minimum
of the N distances as a score for that test waveform. The percentages of the true positives
in the top 10 and 20 waveforms from bubble-probe interaction data are reported in Table
2. Random effects segmental HMMs give a substantially higher accuracy than any of the
other methods. Figure 10 shows the top 10 waveforms found by the different methods. All
of the false positives are from the interaction class bouncing, which is more similar in shape
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Figure 10: Top 10 waveforms found by four different algorithms in bubble-probe interac-
tion data. ‘o’s are true positives and ‘x’s are false positives. Segmentations by
the Viterbi algorithm are overlaid on top of the waveforms in the case of true
positives for segmental HMMs and random effects segmental HMMs. Segmen-
tations are not produced by the Euclidean distance method or by dynamic time
warping.
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Figure 11: Segmentation of a normal ECG heartbeat by the Viterbi algorithm for segmental
HMMs (left) and for random effects segmental HMMs (right).
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Figure 12: ROC plot for ECG data.

to the class splitting than other interaction types. Random effects segmental HMMs can
effectively distinguish subtle differences in shape between the pattern that we are modeling
and the non-pattern waveforms. Segmentations are overlaid in Figure 10 on the waveforms
as found by probabilistic models using the Viterbi algorithm. Such segmentations are not
available for dynamic time warping and Euclidean distance methods, providing an additional
advantage of using probabilistic models in applications where segmentation is useful.

Figure 12 shows the ROC curves for the ECG data. The results from Euclidean distance
are not available for ECG data because the method as implemented requires the length of
each waveform sequence to be the same. Random effects segmental HMMs have the highest
accuracy, particularly over the range from 0 to 0.5 in terms of fraction of false positives
(x-axis) which is typically the range of interest when ranking objects by similarity to a
target. A similar result was obtained for bubble-probe interaction data as can be seen in
Figure 13.
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Figure 13: ROC plot for bubble-probe interaction data.

6. Discussions and Conclusions

As noted elsewhere in the paper, the random effects segmental HMM proposed in this paper
can be extended in multiple different ways. For example, the parametrization of the segment
models as linear functions of time can be generalized directly to any functional form that
is linear in the parameters without altering the underlying time complexity of the learning
and inference algorithms.

In the results reported here we applied our model to score relatively short waveform
“snippets” to detect waveforms that are similar in shape to a query waveform. In order
to parse online time-series data and detect “embedded” waveforms relative to a target, a
two-state HMM with a pattern state and a background state can be used, where the random
effects segmental HMM is embedded inside the pattern state. Each instance of the pattern
waveform is allowed to have its own parameters via the random effects mechanism. The
background state models any measurements that do not belong to pattern waveforms. A
long time-series can then be parsed via the Viterbi algorithm (for example) to segment the
series into background and pattern states, where the segments that belong to the pattern
state correspond to predicted waveform locations according to the model.

In conclusion, we have proposed a probabilistic model that extends segmental HMMs
to include random effects. This model allows an individual waveform to vary its shape in
a constrained manner via a prior distribution over individual waveform parameters. The
ECME algorithm for learning this model greatly improved the speed of convergence of pa-
rameter estimation compared to a standard EM approach. Experimental results support
the hypothesis that random effects segmental HMMs perform better in modeling, segmenta-
tion, and recognition of waveforms compared both to probabilistic models without random
effects and to non-probabilistic methods.
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Appendix A: Re-estimation Formulas for EM

The re-estimation formula for the transition probabilities and the duration distribution
parameters can be shown to be:

a
(t+1)
kl =

∑N
i=1

1

P (yi|θ
(t)

)

∑

t αi
t(k)a

(t)
kl βi∗

t (l)

∑N
i=1

1

P (yi|θ
(t)

)

∑

m

∑

t αi
t(k)a

(t)
kmβi∗

t (l)
,

λ
(t+1)
k =

∑N
i=1

1

P (yi|θ
(t)

)

∑

t

∑

d Ciktd · (d − 1)

∑N
i=1

1

P (yi|θ
(t)

)

∑

t

∑

d Ciktd

,

where

Ciktd = αi∗
t (k)P (d|λ

(t)
k )p(yi

t+1:t+d|θ
(t)
fk

)βi
t+d(k).

Using the notation of Xi
td = Xi

t−d+1:t and yi
td = yi

t−d+1:t, we update the covariance
matrix of the top level of the segment distribution model according to

Ψ
(t+1)
k =

∑N
i=1

P
t

P
d<t

CiktdE[ui
k
ui

k

′

|Y,θ
(t)

]

P (yi|θ
(t)

)
∑N

i=1

P
t

P
d<t

Ciktd

P (yi|θ
(t)

)
,

and for the bottom level, we re-estimate the parameters using
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Appendix B: Initialization of the EM and ECME Algorithms

Initialization of the EM and ECME algorithms is based on manual segmentation of a single
waveform in the training data. The manual segmentation is only used to determine initial
values for the parameters (for use in the first E-step), and is not used in any further manner
by EM or ECME after this initialization.

Given the manually segmented waveform, the parameters A, θd, and βk’s are set to
their maximum-likelihood values as estimated from this waveform. The 2 × 2 covariance
matrices Ψk’s of the random effects component of the model require more than two seg-
mented waveforms in order to obtain maximum-likelihood estimates—thus, their values are
initialized in a different manner as follows. The variance term for the slope in Ψk’s is set to
a value generated from a uniform distribution over [zmin, zmax]. From preliminary inspec-
tion of data zmin and zmax are set to 1 and 10 respectively for bubble-probe interaction
data, and 1 and 5 for ECG data. As the state index increases, the values of the inter-
cept parameters in βk’s tend to increase and a small variability in slope leads to a more
significant variability in intercept values. To take into account this we initialize the vari-
ance for the intercept by sampling a value from the same uniform distribution [zmin, zmax]
and multiplying this value by the state index i for that intercept. Given that a positive
change in the slope leads to a decreased value of the intercept we initialize the covariance
between the slope and intercept to a negative value generated from a uniform distribution
over [zmin×(−0.1), zmax×(−0.1)]. Multiplying zmin and zmax by 0.1 makes the covariance
relatively small compared to variances in Ψk’s and also ensures that the covariance matri-
ces Ψk’s are positive definite. Finally, we sample the initial value for the noise parameter
σ2 from a uniform distribution over [1, 6] for both data sets. This initialization strategy
essentially sets the variance parameters Ψk’s and σ2 to relatively large initial values and
then lets them adjust to the training data.
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