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Abstract. Analyses of fMRI brain data are often based on statistical
tests applied to each voxel or use summary statistics within a region
of interest (such as mean or peak activation). These approaches do not
explicitly take into account spatial patterns in the activation signal. In
this paper, we develop a response surface model with parameters that
directly describe the spatial shapes of activation patterns. We present
a stochastic search algorithm for parameter estimation. We apply our
method to data from a multi-site fMRI study, and show how the esti-
mated parameters can be used to analyze different sources of variability
in image generation, both qualitatively and quantitatively, based on spa-
tial activation patterns.

1 Introduction

Functional magnetic resonance imaging (fMRI) is one of the primary techniques
for studying how the brain functions when triggered by external stimuli. Neural
activity in local areas of the brain changes the oxygenated blood level, changes
that in turn can be detected by MRI scanners. The data collected in an fMRI
session consist of a time-series of voxel images, containing both temporal and
spatial information about brain activation patterns. The temporal aspect of the
data is often aggregated by fitting a linear regression model that relates the
activation data at each voxel to the stimulus signal and perhaps other predictors
as well. The regression coefficients of the stimulus signal at each voxel (often
denoted as (3) or other regression summary (e.g., t-statistic) can then be used as
a statistical parametric map of activity [1]. There is a significant body of prior
work using techniques such as hypothesis testing and thresholding to search these
statistical voxel images for activated brain regions. Test statistics used in these
techniques include the maximum activation intensity within a selected region
of interest, or the spatial extent of the largest set of contiguous voxels above a
threshold [2, 3].

An important aspect of the data that is typically not considered in these
studies is the spatial pattern of activation across voxels. Voxels with a high
activation level tend to appear in spatial clusters in the G-maps, forming what
looks like a bell shape for each activation cluster. These spatial clusters can



be explained to first order by assuming that the underlying true activations
are point sources that are then spatially smoothed (convolved) by Gaussian-like
filters.

In this paper we characterize fMRI activation patterns in the brain by mod-
eling the shape of each “activation cluster” by (a) its height or peak value,
representing the amount of activation, and (b) the location of the cluster, mod-
eling the center of activation in voxel-space. We represent these features using
a parametric model of the functional form of the surface with free parameters
for the heights and center locations of the “bumps.” These parameters can be
estimated in a statistical manner from the 3 activation maps.

In terms of relevant prior work, Hartvig [5] also used a similar parametric
function for modeling spatial activation patterns. However, the focus in this ear-
lier work was on extracting activated voxels by thresholding after the model
parameters were estimated. In the work described in this paper we are inter-
ested in the shape features themselves, and analyze the activation pattern at the
feature level rather than at a voxel level. In our experiments we show how the es-
timated features of the local activation clusters can be used in a multi-site study
of fMRI to analyze sources of variability. Evidence in this direction is suggested
by Fig. 1, where the locations of the peaks of activation are more consistent
in the four runs of the same subject within the same site (MRI scanner), than
between the two sites.

Multi-site fMRI studies are not currently common, but are becoming more
so as the need is growing to combine imaging data across sites to create larger
datasets than would be possible at a single site. These datasets allow imaging
experiments in rare diseases where few subjects would be available at any given
site, or with very complex hypotheses where a single site study would be under-
powered. In particular, in one multi-site study of signal reliability across sites
[4] the activation levels and locations were similar, but the pattern of activation
across sites was very different. The ability to assess such patterns of activation
provides the primary motivation for the method proposed in this paper.

The paper is organized as follows. In Sect. 2, we briefly describe the data
collection process and preprocessing
steps used to produce the activa- T
tion maps analyzed in this paper. ';., ';_..'l '5_."' -g__f'
In Sect. 3, we introduce a spatial :
model for activation patterns, de- (a) Duke (4T) site
scribe inference procedures for this
model and present experimental re- . i
sults based on fitting this model to . . L
multi-site fMRI data. In Sect. 4, we :
show how the shape features esti- (b) lowa site
mated from the surface modeling
can be used to investigate multi-site

variability. Sect. 5 concludes with a
brief discussion on future work.

Fig. 1. Raw data (8 maps) for a cross sec-
tion at z = 53 of the right precentral gyrus
of four runs within visit 2 of subject 3



2 Multi-Site Data Collection and Preprocessing

fMRI scans for the same five control subjects were collected from 10 different
scanners (UCSD, UCI, Stanford, Duke (1.5T), Duke (4T), New Mexico, Min-
nesota, Iowa, BWH, MGH) as part of a multi-site study of functional brain
images, known as FIRST BIRN (Functional Imaging Research on Schizophrenia
Test-bed Biomedical Informatics Research Network), also known as Function
BIRN or fBIRN. For each subject there were two visits to each site, and at
each visit fMRI data were collected for four runs of a sensorimotor task and two
runs of breathholding, resting, and two cognitive tasks. A primary goal of this
data collection is to better understand the variability of fMRI response patterns
across runs, visits, scanners (sites) and subjects, so that future data collected
across sites and subjects can be analyzed collectively and consistently. In this
paper, we use the data from the sensorimotor task, and we focus on activation
within specific regions of interest such as the right precentral gyrus and the left
superior temporal gyrus that are relevant to this task.

Each run of the sensorimotor task produces a series of 85 scans that can be
thought of as a large time-series of voxel images. The set of scans for each run
is preprocessed in a standard manner using SPM99, with the default settings.
The preprocessing steps include correction of head motion, normalization to a
common brain shape (MNI template), and spatial smoothing.

A general linear model is then fit to the time-series data for each voxel. A
B-map is a voxel image of the regression coefficients (3’s) that summarizes the
activation across time as an activation map. Binary masks for regions of interest
from the normalized atlas were then used to extract the 8 values for all voxels
within the region.

3 Activation Surface Modeling

3.1 Model

We model the spatial activation pattern (S-map) for a region of interest as a
superposition of multiple Gaussian-shaped surfaces, with a constant background
term for non-activation, and with additive Gaussian measurement noise. Be-
low we develop the model for the case of 2-dimensional slices of pixels—the
3-dimensional case can be derived directly as an extension of the 2-dimensional
case, but is not pursued in this paper.

Assuming the number M of Gaussian surfaces for a 2-dimensional slice of
a region is known and fixed, the model for the activation value 8 at position
x = (x1,x2)" is defined as

M
B=n+ D knexp(—(x —bu) (x = bu)/owm) +e, (1)
m=1

where ¢ is distributed as N(0,0?), and p is the background level. 8,, = {k,, by,
Om}t, m = 1,..., M, is the set of parameters for the mth Gaussian surface,



corresponding to activation centered around b, = (bim,bay)’ with height of
km, and o, controlling the volume under the surface. By using o,, instead of a
2 x 2 covariance matrix, we assume a spherical shape with no correlation between
x1 and zo directions.

In the Bayesian estimation setting, we are interested in the posterior dis-
tribution of the unknown parameters p(u, o, 01,...,05|3). Using Bayes’ rule,
we write p(p,0,01,...,00m[B) = p(Blu,0,01,...,0Mm)p(1,0,61,...,0:)/p(B),
where p(8| p,0,01,...,0)r) is the likelihood of the 5 values 8 = {f1,...,0n}
for a region with N voxels given the model in (1). Assuming independent priors
for (1, 0?), and 6,,’s, we choose a uniform prior p(u,loga) oc 1 for (u,logo),
P(km) o< 1 for ky,’s, where k,,, > 0 for positive activations, and assign a Gamma(a,
b) prior on o, with hyperparameters a and b. Given that it is reasonable to be-
lieve that the center of activation b, is located inside (or close to) the region of
brain under consideration, we assume p(b,,) is uniform inside or within one pixel
of the region. It is straightforward to verify that this choice of prior distributions
yields a proper posterior distribution.

3.2 Parameter Estimation Using Stochastic Search

Because of the nonlinearity of the model described in Sect. 3.1, it is not possible
to determine the posterior distribution of the parameters analytically, and we
need to rely on simulation methods to obtain samples from the posterior. In this
work, we use a combination of the Gibbs sampler and the Metropolis algorithm.
In the Gibbs sampler, starting from initial values for the unknown parame-
ters, at each iteration we update each parameter in turn by replacing it with a
sample from its conditional posterior distribution given the data and the most
recent samples of the other parameters. By repeating this update, the Gibbs
sampler converges (under mild conditions) to a state where the samples can be
presumed to be coming from the joint posterior distribution of interest. Direct
sampling from the conditional posterior distribution is possible for p and o2,
but not for the 6,,’s. The Metropolis algorithm is used to sample 8,,’s inside
the Gibbs sampler. We describe the details of the sampling algorithm below.

1. Sample a new value for u from its conditional posterior distribution p(u|o, 81,

<00, B) = N(j1,0?/N), where fi = (310, (8 — Sy kmexp(—(xi — by, )

(xi —bpm)/om)))/N.

2. Sample a new value for o2 from its conditional posterior distribution. Given
the prior p(logo) o« 1, which is equivalent to p(c?) o o~2, the condi-
tional posterior distribution for o2 can be found as p(c?|u, 01, ...,0r,08) =
Inv-gamma (v/2, (v/2)s?), where the degree of freedom v = N and s? =
(i (Bi = 1= Sy kmexp(—(xi — b)) (xi — b)) /o)) /N

3. Form=1,..., M,

(a) Sample k, from the jumping distribution N(k,,, (7x)?) and compute
r = (p(BIkg, 01, (k7)) (P(Bllom, 0, )p(k)). Where O_y, repre-
sents all parameters other than k,,. If » > 1, accept £, as a new value
for k,,, otherwise, accept it with the probability r.



(b) Update b,, as in 3a, but using the jumping distribution No(b,,, (16)21).
(c) Update o, as in 3a but using the jumping distribution N (o, (15)?).

Before the start of the sampler, the values for (74)2, ()2, and (7,)? in Step 3
are adjusted to values that keep the acceptance rate at roughly 30-50%.

In the results described below we summarize the posterior distributions via
“point estimates” (specific values of the parameters), corresponding to the mean
values for each parameter over the samples (i.e., the estimated posterior mean).

3.3 Results from Surface Fitting

In this section, we discuss results
of our modeling procedure for two
cross sections, one at z = 53 of
the right precentral gyrus and an-
other at z = 33 of the left supe-

rior temporal gyrus, for subjects  Left superior E

Right precentral
gyrus at z = 53

Raw data Estimated surface
1 and 3 in our study, for the sen-  temporal gyrus E
sorimotor task at all sites. at z = 33 a

From visual inspection of the
images, we set the number of Fig.2.Raw data vs. estimated surfaces from
Gaussians in the model to M =1 run 3, visit 2, and subject 3 at Iowa site.
for subject 1, and M = 2 for sub-
ject 3 in the case of the right precentral gyrus, and M = 2 for both subjects in
the case of the left superior temporal gyrus. From an exploratory analysis of the
data, the hyperparameters a and b of the gamma prior distributions of the ¢’s
were set so that the mode and variance are approximately 15 and 160 (a = 3.0
and b = 0.1365). With this setting of the model, we ran the Markov chain sim-
ulation for 20,000 iterations for each image until convergence, and output the
mean of the samples from the last 10,000 iterations to provide point estimates
of the parameters.

A typical example (for a particular run, visit, and subject) is shown in
Fig. 2, comparing the raw [§ maps with the activation maps for the fitted
model based on point estimates of the parameters from the same raw data.
The shapes of the activation pattern in the estimated surfaces such as the lo-
cations of the peaks are consistent with what we see in the raw data. Table 1
shows an average across multiple images of the sum of squared errors (across
voxels) between the fitted model and the data, divided by the voxel variance
in each image and expressed as a percentage—in effect, the average amount
of variability in the data not explained by the model. Both Fig. 2 and Table
1 suggest that while the functional form of the model is a result of various
simplifying assump-
tions it neverthe-
less provides a
good fit to the
observed spatial
activation patterns.

Table 1. Percentage of variance not explained by the models.
subject 1|subject 3
Right precentral gyrus (z = 53) 15.4% | 7.1%
Left superior temporal gyrus (z = 33)| 16.1% | 5.6%




4 Modeling Sources of Variability

We can think of the estimated parameters of the model as features that summa-
rize the activation pattern, and analyze the statistical variation of these features
rather than that of the raw data. Fig. 3 visually shows the variabilities in the
estimated location parameters of the local activation centers at each of run, visit,
and site levels for the cross section z = 53 of the right precentral gyrus of sub-
ject 3. The estimated locations are represented as o’s for visit 1 and +’s for visit
2. The two bumps are connected with a line if they come from the same run.
Across certain groups of sites (e.g., UCI and UCSD) there appears to be little
cross-site variability in the estimated spatial locations, but between other pairs
(e.g., MGH and UCI) the cross-site variation is much larger than the within-site
variation. Qualitatively similar results are obtained for other cross-sections.

In this section, we attempt to quantify the contributions of site, visit, and run
effects to variation in features of the local activations within each subject. In the
case of M = 2, we first find the correspondence of the two bumps across images
from different sites, visits and runs based on the estimated location parameters
using a simple heuristic algorithm, and consider each bump seperately in the
variance component analysis. In Sect. 4.1 we discuss a Bayesian hierarchical
model for a variance component analysis. In Sect. 4.2 we present the results
from the model.

4.1 Bayesian Variance Component Analysis

A traditional variance components analysis can be used to decompose the ob-
served variation in signal into portions attributable to site, visit, and run vari-
abilities. One such model that we choose to use in our analysis is y;;x = pt+5; +
Vij +Tijk, Where ¥ is the response measure, p is an overall mean, s; is a site ef-
fect, v;; is a visit effect and ;1 is a run effect (essentially all sources of variation
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Fig. 3. Variability in locations parameters estimated from right precentral gyrus at
z = 53 of subject 3. o’s are visit 1, and +’s are visit 2. Two locations are connected
with a line if they come from the same image.



not included in previous terms). The responses y;;i’s considered in this analysis
are the estimated locations and heights of each of the Gaussian components.
Each of the effects (site, visit, run) is further modeled as a Gaussian random
variable with mean zero and variance/covariance parameter that characterizes
the contribution to overall response variability of the particular source. It is the
variance parameters, or the variance components, that are of interest.

Parameters are estimated as means of the posterior distribution of the vari-
ance components from a Bayesian analysis with weak prior distributions on the
variance components. The prior distributions for the analyses reported here are
N(0,10%%) for p (a common vague prior for the mean of a Gaussian distribu-
tion), gamma with mean 1 and variance 100 on the one dimensional precision
parameters (reciprocals of the variances), and Wishart distribution with degree
of freedom 2 and scale parameters estimated empirically from the y;;’s for the
covariance matrices. Samples of the variance parameters from their posterior dis-
tribution given the data are obtained using WinBugs, a freely available software
implementation of the Gibbs sampler. The Gibbs sampler was run for 1,000,000
iterations by which time the draws were determined to be representative of the
posterior distribution. The means of the last 200,000 draws are reported as es-
timates for the variance components.

4.2 Results

We compute the variance components for sites, visits, and runs of location and
height parameters, and show the proportions of variance with respect to the
total variation in Tables 2 and 3. For the 2 x 2 covariance matrices of location
parameters, we use the absolute value of the determinant of the matrix as a
summary of the amount of variation instead of the full matrix.

In the cross section of z = 53 of the right precentral gyrus the effect size due
to sites is consistently larger than visit and run effects across different bumps and
subjects in both locations and heights. The visit effects account for the smallest
proportion of the total variabilities. Note also that the relative sizes of variance
components (for sites, visits, runs) are similar for both subjects.

A slightly different pattern is observed in the cross section of z = 33 of the left
superior temporal gyrus. The contribution from visit effects is still the smallest,
but the run variability is often larger than the site variability. Overall we see more
consistent patterns of variance components in the right precentral gyrus than in
the left superior
temporal gyrus.

. Table 2. Proportions of variance components for right pre-
The right precen-

. central gyrus at z = 53

t?al EYTuUs 15 con- Subject 1 Subject 3

.s1de.rably smaller Height|Location Height Location

1n s1ze, therefore, Bump 1|Bump 2|Bump 1|Bump 2
s less affected TG ETT086 [ 050 | 0.58 | 0.67 | 0.90
by the limitation v 999 | 007 | 013 | 018 | 0.02 | 0.03

that we are look= gy | 927 | 007 | 037 | 024 | 031 | 007
ing at a 2 dimen-




Table 3. Proportions of variance components for left superior temporal gyrus at z = 33

Subject 1 Subject 3
Height Location Height Location
Bump 1|{Bump 2{Bump 1|Bump 2(|Bump 1{Bump 2|Bump 1{Bump 2
Site | 0.25 0.52 0.05 0.06 0.49 0.59 0.40 0.45
Visit| 0.42 0.25 0.18 0.03 0.12 0.05 0.04 0.02
Run| 0.33 0.23 0.77 0.91 0.39 0.36 0.56 0.53

sional cross section instead of taking into account the variability in all of the
three dimensions.

An alternative non-Bayesian method of moments approach provides similar
results with the exception of some negative estimates of variances (a known
disadvantage of this approach).

5 Conclusions

We have shown that spatial modeling of fMRI activation patterns in local brain
regions can extract reliable and useful information providing (for example) a
basis for statistical analysis of variability. Future work includes analyzing more
regions of interest with all 5 subjects in the study, extending the model to 3-
dimensional voxel data, and developing techniques for automatically selecting
the number of bumps M.
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