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Abstract

We address the problem of learning a sparse Bayesian network structure for con-
tinuous variables in a high-dimensional space. The constraint that the estimated
Bayesian network structure must be a directed acyclic graph (DAG) makes the
problem challenging because of the huge search space of network structures. Most
previous methods were based on a two-stage approach that prunes the search
space in the first stage and then searches for a network structure satisfying the
DAG constraint in the second stage. Although this approach is effective in a low-
dimensional setting, it is difficult to ensure that the correct network structure is not
pruned in the first stage in a high-dimensional setting. In this paper, we propose
a single-stage method, called A* lasso, that recovers the optimal sparse Bayesian
network structure by solving a single optimization problem with A* search algo-
rithm that uses lasso in its scoring system. Our approach substantially improves
the computational efficiency of the well-known exact methods based on dynamic
programming. We also present a heuristic scheme that further improves the ef-
ficiency of A* lasso without significantly compromising the quality of solutions.
We demonstrate our approach on data simulated from benchmark Bayesian net-
works and real data.

1 Introduction

Bayesian networks have been popular tools for representing the probability distribution over a large
number of variables. However, learning a Bayesian network structure from data has been known
to be an NP-hard problem [1] because of the constraint that the network structure has to be a di-
rected acyclic graph (DAG). Many of the exact methods that have been developed for recovering the
optimal structure are computationally expensive and require exponential computation time [15, 7].
Approximate methods based on heuristic search are more computationally efficient, but they recover
a suboptimal structure. In this paper, we address the problem of learning a Bayesian network struc-
ture for continuous variables in a high-dimensional space and propose an algorithm that recovers the
exact solution with less computation time than the previous exact algorithms, and with the flexibility
of further reducing computation time without a significant decrease in accuracy.

Many of the existing algorithms are based on scoring each candidate graph and finding a graph with
the best score, where the score decomposes for each variable given its parents in a DAG. Although
methods may differ in the scoring method that they use (e.g., MDL [9], BIC [14], and BDe [4]),
most of these algorithms, whether exact methods or heuristic search techniques, have a two-stage
learning process. In Stage 1, candidate parent sets for each node are identified, ignoring the DAG
constraint. Then, Stage 2 employs various algorithms to search for the best-scoring network struc-
ture that satisfies the DAG constraint, limiting the search space to the candidate parent sets from
Stage 1. For Stage 1, methods such as sparse candidate [2], max-min parents children [17], and total
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conditioning [11] algorithms have been previously proposed. For Stage 2, exact methods based on
dynamic programming [7, 15] and A* algorithm [19] as well as inexact methods such as heuristic
search technique [17] and linear programming formulation [6] have been developed. These ap-
proaches have been developed primarily for discrete variables, and regardless of whether exact or
inexact methods are used in Stage 2, Stage 1 involves exponential computation time and space.

For continuous variables, L1-regularized Markov blanket (L1MB) algorithm [13] was proposed as a
two-stage method that uses lasso to select candidate parents for each variable in Stage 1 and performs
heuristic search for DAG structure and variable ordering in Stage 2. Although a two-stage approach
can reduce the search space by pruning candidate parent sets in Stage 1, Huang et al. [5] observed
that in a high-dimensional setting, applying lasso in Stage 1 as in L1MB is likely to miss the true
parents, limiting the quality of solution in Stage 2. They proposed the sparse Bayesian network
(SBN) algorithm that formulates the problem of Bayesian network structure learning as a single-
stage optimization problem and transforms it into a lasso-type optimization to obtain an approximate
solution. Then, they applied a heuristic search to refine the solution as a post-processing step.

In this paper, we propose a new algorithm, called A* lasso, for learning a sparse Bayesian net-
work structure with continuous variables in high-dimensional space. Our method is a single-stage
algorithm that finds the optimal network structure with a sparse set of parents while ensuring the
DAG constraint is satisfied. We first show that a lasso-based scoring method can be incorporated
within dynamic programming (DP). While previous approaches based on DP required identifying
the exponential number of candidate parent sets and their scores for each variable in Stage 1 before
applying DP in Stage 2 [7, 15], our approach effectively combines the score computation in Stage
1 within Stage 2 via lasso optimization. Then, we present A* lasso that significantly prunes the
search space of DP by incorporating A* search algorithm [12], while guaranteeing the optimality
of the solution. Since in practice, A* search can still be expensive compared to heuristic methods,
we explore heuristic schemes that further limit the search space within A* lasso. We demonstrate in
our experiments that this heurstic approach can substantially improve the computation time without
significantly compromising the quality of solution, especially on large Bayesian networks.

2 Background on Bayesian Network Structure Learning

A Bayesian network is a probabilistic graphical model defined over a DAG G with a set of p =
|V | nodes V = {v1, . . . , vp}, where each node vj is associated with a random variable Xj [8].
The probability model associated with G in a Bayesian network factorizes as p(X1, . . . , Xp) =∏p

j=1 p(Xj |Pa(Xj)), where p(Xj |Pa(Xj)) is the conditional probability distribution for Xj given
its parents Pa(Xj) with directed edges from each node in Pa(Xj) toXj inG. We assume continuous
random variables and use a linear regression model for the conditional probability distribution of
each node Xj = Pa(Xj)

′βj + ε, where βj = {βjk’s for Xk ∈ Pa(Xj)} is the vector of unknown
parameters to be estimated from data and ε is the noise distributed as ∼ N(0, 1).

Given a dataset X = [x1, . . . ,xp], where xj is a vector of n observations for random variable Xj ,
our goal is to estimate the graph structure G and the parameters βj’s jointly. We formulate this
problem as that of obtaining a sparse estimate of βj’s, under the constraint that the overall graph
structure G should not contain directed cycles. Then, the nonzero elements of βj’s indicate the
presence of edges in G. We obtain an estimate of Bayesian network structure and parameters by
minimizing the negative log likelihood of data with sparsity enforcing L1 penalty as follows:

min
β1,...,βp

p∑
j=1

‖ xj − x−j
′βj ‖22 +λ

p∑
j=1

‖ βj ‖1 s.t. G ∈ DAG, (1)

where x−j represents all columns of X excluding xj , assuming all other variables are candidate
parents of node vj . Given the estimate of βj’s, the set of parents for node vj can be found as the
support of βj , S(βj) = {vi|βji 6= 0}. The λ is the regularization parameter that determines the
amount of sparsity in βj’s and can be determined by cross-validation. We notice that if the acyclicity
constraint is ignored, Equation (1) decomposes into individual lasso estimations for each node:

LassoScore(vj |V \vj) = min
βj

‖ xj − x−j
′βj ‖22 +λ ‖ βj ‖1,
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where V \vj represents the set of all nodes in V excluding vj . The above lasso optimization problem
can be solved efficiently with a shooting algorithm [3]. However, the main challenge in optimizing
Equation (1) arises from ensuring βj’s to satisfy the DAG constraint.

3 A* Lasso for Bayesian Network Structure Learning

3.1 Dynamic Programming with Lasso
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Figure 1: Search space of
variable ordering for three
variables V = {v1, v2, v3}.

The problem of learning a Bayesian network structure that satisfies
the constraint of no directed cycles can be cast as that of learning an
optimal ordering of variables [8]. Once the optimal variable ordering
is given, the constraint of no directed cycles can be trivially enforced
by constraining the parents of each variable in the local conditional
probability distribution to be a subset of the nodes that precede the
given node in the ordering. We let ΠV = [πV

1 , . . . , π
V
|V |] denote an

ordering of the nodes in V , where πV
j indicates the node v ∈ V in

the jth position of the ordering, and ΠV
≺vj

denote the set of nodes in
V that precede node vj in ordering ΠV .

Algorithms based on DP have been developed to learn the optimal
variable ordering for Bayesian networks [16]. These approaches are
based on the observation that the score of the optimal ordering of the
full set of nodes V can be decomposed into (a) the optimal score for the first node in the ordering,
given a choice of the first node and (b) the score of the optimal ordering of the nodes excluding the
first node. The optimal variable ordering can be constructed by recursively applying this decompo-
sition to select the first node in the ordering and to find the optimal ordering of the set of remaining
nodes U ∈ V . This recursion is given as follows, with an initial call of the recursion with U = V :

OptScore(U) = min
vj∈U

OptScore(U\vj) + BestScore(vj |V \U) (2)

πU
1 = argmin

vj∈U
OptScore(U\vj) + BestScore(vj |V \U), (3)

where BestScore(vj |V \U) is the optimal score of vj under the optimal choice of parents from V \U .

In order to obtain BestScore(vj |V \U) in Equations (2) and (3), for the case of discrete variables,
many previous approaches enumerated all possible subsets of V as candidate sets of parents for node
vj to precompute BestScore(vj |V \U) in Stage 1 before applying DP in Stage 2 [7, 15]. While this
approach may perform well in a low-dimensional setting, in a high-dimensional setting, a two-stage
method is likely to miss the true parent sets in Stage 1, which in turn affects the performance of Stage
2 [5]. In this paper, we consider the high-dimensional setting and present a single-stage method that
applies lasso to obtain BestScore(vj |V \U) within DP as follows:

BestScore(vj |V \U) = LassoScore(vj |V \U)

= min
βj ,S(βj)⊆V \U

‖ xj − x−j
′βj ‖22 +λ ‖ βj ‖1 .

The constraint S(βj) ⊆ V \U in the above lasso optimization can be trivially maintained by setting
the βjk for vk ∈ U to 0 and optimizing only for the other βjk’s. When applying the recursion in
Equations (2) and (3), DP takes advantage of the overlapping subproblems to prune the search space
of ordering, since the problem of computing OptScore(U ) for U ⊆ V can appear as a subproblem
of scoring orderings of any larger subsets of V that contain U .

The problem of finding the optimal variable ordering can be viewed as that of finding the shortest
path from the start state to the goal state in a search space given as a subset lattice. The search space
consists of a set of states, each of which is associated with one of the 2|V | possible subsets of nodes
in V . The start state is the empty set {} and the goal state is the set of all variables V . A valid
move in this search space is defined from a state for subset Qs to another state for subset Qs′ , only
if Qs′ contains one additional node to Qs. Each move to the next state corresponds to adding a node
at the end of the ordering of the nodes in the previous state. The cost of such a move is given by
BestScore(v|Qs), where v = Qs′\Qs. Then, each path from the start state to the goal state gives one

3



possible ordering of nodes. Figure 1 illustrates the search space, where each state is associated with
Qs. DP finds the shortest path from the start state to the goal state that corresponds to the optimal
variable ordering by considering all possible paths in this search space and visiting all 2|V | states.

3.2 A* Lasso for Pruning Search Space

As discussed in the previous section, DP considers all 2|V | states in the subset lattice to find the
optimal variable ordering. Thus, it is not sufficiently efficient to be practical for problems with
more than 20 nodes. On the other hand, a greedy algorithm is computationally efficient because
it explores a single variable ordering by greedily selecting the most promising next state based on
BestScore(v|Qs), but it returns a suboptimal solution. In this paper, we propose A* lasso that
incorporates the A* search algorithm [12] to construct the optimal variable ordering in the search
space of the subset lattice. We show that this strategy can significantly prune the search space
compared to DP, while maintaining the optimality of the solution.

When selecting the next move in the process of constructing a path in the search space, instead of
greedily selecting the move, A* search also accounts for the estimate of the future cost given by a
heuristic function h(Qs) that will be incurred to reach the goal state from the candidate next state.
Although the exact future cost is not known until A* search constructs the full path by reaching the
goal state, a reasonable estimate of the future cost can be obtained by relaxing/ignoring the directed
acyclicity constraint. It is well-known that A* search is guaranteed to find the shortest path if the
heuristic function h(Qs) is admissible [12], meaning that h(Qs) is always an underestimate of the
true cost of reaching the goal state. Below, we describe an admissible heuristic for A* lasso.

While exploring the search space, A* search algorithm assigns a score f(Qs) to each state s and
its corresponding subset Qs of variables for which the ordering has been determined. A* search
algorithm computes this score f(Qs) as the sum of the cost g(Qs) that has been incurred so far to
reach the current state from the start state and an estimate of the cost h(Qs) that will be incurred to
reach the goal state from the current state:

f(Qs) = g(Qs) + h(Qs). (4)
More specifically, given the ordering ΠQs of variables in Qs that has been constructed along the
path from the start state to the state for Qs, the cost that has been incurred so far is defined as

g(Qs) =
∑

vj∈Qs

LassoScore(vj |ΠQs
≺vj ) (5)

and the heuristic function for the estimate of the future cost to reach the goal state is defined as:

h(Qs) =
∑

vj∈V \Qs

LassoScore(vj |V \vj) (6)

Note that the heuristic function is admissible, or an underestimate of the true cost, since the con-
straint of no directed cycles is ignored and each variable in V \Qs is free to choose any variables in
V as its parents, which lowers the lasso objective value.

When the search space is a graph where multiple paths can reach the same state, we can further
improve efficiency if the heuristic function has the property of consistency in addition to admis-
sibility. A consistent heuristic always satisfies h(Qs) ≤ h(Qs′) + LassoScore(vk|Qs), where
LassoScore(vk|Qs) is the cost of moving from state Qs to state Qs′ with {vk} = Qs′\Qs. Consis-
tency ensures that the first path found by A* search to reach the given state is always the shortest
path to the state [12]. This allows us to prune the search when we reach the same state via a different
path later in the search. The following proposition states that our heuristic function is consistent.

Proposition 1 The heuristic in Equation (6) is consistent.

Proof For any successor state Qs′ of Qs, let vk = Qs′\Qs.

h(Qs) =
∑

vj∈V \Qs

LassoScore(vj |V \vj)

=
∑

vj∈V \Qs,vj 6=vk

LassoScore(vj |V \vj) + LassoScore(vk|V \vk)

≤ h(Qs′) + LassoScore(vk|Qs),
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Input : X, V , λ
Output: Optimal variable ordering ΠV

Initialize OPEN to an empty queue;
Initialize CLOSED to an empty set;
Compute LassoScore(vj |V \vj) for all vj ∈ V ;
OPEN.insert((Qs = {}, f(Qs) = h({}), g(Qs) = 0,ΠQs = [ ]));
while true do

(Qs, f(Qs), g(Qs),ΠQs)← OPEN.pop();
if h(Qs) = 0 then

Return ΠV ← ΠQs ;
end
foreach v ∈ V \Qs do

Qs′ ← Qs ∪ {v};
if Qs′ /∈ CLOSED then

Compute LassoScore(v|Qs) with lasso shooting algorithm;
g(Qs′)← g(Qs) + LassoScore(v|Qs);
h(Qs′)← h(Qs)− LassoScore(v|V \v);
f(Qs′)← g(Qs′) + h(Qs′);
ΠQs′ ← [ΠQs , v];
OPEN.insert(L = (Qs′ , f(Qs′), g(Qs′),Π

Qs′ ));
CLOSED← CLOSED ∪{Qs′};

end
end

end
Algorithm 1: A* lasso for learning Bayesian network structure

where LassoScore(vk|Qs) is the true cost of moving from state Qs to Qs′ . The inequal-
ity above holds because vk has fewer parents to choose from in LassoScore(vk|Qs) than in
LassoScore(vk|V \vk). Thus, our heuristic in Equation (6) is consistent.
Given a consistent heuristic, many of the paths that go through the same state can be pruned by
maintaining an OPEN list and a CLOSED list during A* search. In practice, the OPEN list can be
implemented with a priority queue and the CLOSED list can be implemented with a hash table. The
OPEN list is a priority queue that maintains all the intermediate results (Qs, f(Qs), g(Qs),Π

Qs)’s
for a partial construction of the variable ordering up toQs at the frontier of the search, sorted accord-
ing to the score f(Qs). During search, A* lasso pops from the OPEN list the partial construction
of ordering with the lowest score f(Qs), visits the successor states by adding another node to the
ordering ΠQs , and queues the results onto the OPEN list. Any state that has been popped by A*
lasso is placed in the CLOSED list. The states that have been placed in the CLOSED list are not
considered again, even if A* search reaches these states through different paths later in the search.

The full algorithm for A* lasso is given in Algorithm 1. As in DP with lasso, A* lasso is a single-
stage algorithm that solves lasso within A* search. Every time A* lasso moves from state Qs to
the next state Qs′ in the search space, LassoScore(vj |ΠQs

≺vj ) for {vj} = Qs′\Qs is computed with
the shooting algorithm and added to g(Qs) to obtain g(Qs′). The heuristic score h(Qs′) can be
precomputed as LassoScore(vj |V \vj) for all vj ∈ V for a simple look-up during A* search.

3.3 Heuristic Schemes for A* Lasso to Improve Scalability
Although A* lasso substantially prunes the search space compared to DP, it is not sufficiently effi-
cient for large graphs, because it still considers a large number of states in the exponentially large
search space. One simple strategy for further pruning the search space would be to limit the size of
the priority queue in the OPEN list, forcing A* lasso to discard less promising intermediate results
first. In this case, limiting the queue size to one is equivalent to a greedy algorithm with a scoring
function in Equation (4). In our experiments, we found that such a naive strategy substantially re-
duced the quality of solutions, because the best-scoring intermediate results tend to be the results at
the early stage of the exploration at the shallow part of the search space near the start state, due to
the admissible heuristic that underestimates the true cost.

Instead, given a limited queue size, we propose to distribute the intermediate results to be discarded
across different depths/layers of the search space. For example, given the depth of the search space
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Table 1: Comparison of computation time of different methods
Dataset (Nodes) DP A* lasso A* Qlimit 1000 A* Qlimit 200 A* Qlimit 100 A* Qlimit 5 L1MB SBN
Dsep (6) 0.20 (64) 0.14 (15) – (–) – (–) – (–) 0.17 (11) 2.65 8.76
Asia (8) 1.07 (256) 0.26 (34) – (–) – (–) – (–) 0.22 (12) 2.79 8.9
Bowling (9) 2.42 (512) 0.48 (94) – (–) – (–) – (–) 0.23 (13) 2.85 8.75
Inversetree (11) 8.44 (2048) 1.68 (410) – (–) 1.8 (423) 1.16 (248) 0.2 (16) 3.03 8.56
Rain (14) 1216 (1.60e4) 76.64 (2938) 64.38 (1811) 13.97 (461) 7.88 (270) 1.67 (17) 12.26 10.19
Cloud (16) 1.6e4 (6.6e4) 137.36 (2660) 108.39 (1945) 26.16 (526) 9.92 (244) 2.14 (19) 4.72 14.56
Funnel (18) 4.2e4 (2.6e5) 1527.0 (2.3e4) 88.87 (2310) 25.19 (513) 11.53 (248) 2.73 (21) 4.76 10.08
Galaxy (20) 1.3e5 (1.0e6) 2.40e4 (8.2e4) 110.05 (3093) 27.59 (642) 12.02 (323) 3.03 (23) 6.59 11.0
Factor (27) – (–) – (–) 1389.7 (3912) 125.91 (801) 59.92 (397) 3.96 (30) 9.04 13.91
Insurance (27) – (–) – (–) 2874.2 (3448) 442.65 (720) 202.9 (395) 16.31 (33) 10.96 29.45
Water (32) – (–) – (–) 2397.0 (3442) 301.67 (687) 130.71 (343) 12.14 (38) 32.73 14.96
Mildew (35) – (–) – (–) 3928.8 (3737) 802.76 (715) 339.04 (368) 29.3 (36) 15.25 116.33
Alarm (37) – (–) – (–) 2732.3 (3426) 384.87 (738) 158.0 (378) 12.42 (42) 7.91 39.78
Barley (48) – (–) – (–) 10766.0 (4072) 1869.4 (807) 913.46 (430) 109.14 (52) 23.25 483.33
Hailfinder (56) – (–) – (–) 9752.0 (3939) 2580.5 (816) 1058.3 (390) 112.61 (57) 44.36 826.41

Table 2: A* lasso computation time under different edge strengths βj’s
Dataset (Nodes) (1.2,1.5) (1,1.2) (0.8,1)
Dsep (6) 0.14 (15) 0.14 (16) 0.17 (30)
Asia (8) 0.26 (34) 0.23 (37) 0.29 (59)
Bowling (9) 0.48 (94) 0.49 (103) 0.54 (128)
Inversetree (11) 1.68 (410) 2.09 (561) 2.25 (620)
Rain (14) 76.64 (2938) 66.93 (2959) 97.26 (4069)
Cloud (16 ) 137.36 (2660) 229.12 (7805) 227.43 (8858)
Funnel (18) 1526.7 (22930) 2060.2 (33271) 3744.4 (40644)
Galaxy (20) 24040 (82132) 66710 (168492) 256490 (220821)

|V |, if we need to discard k intermediate results, we discard k/|V | intermediate results at each depth.
In our experiments, we found that this heuristic scheme substantially improves the computation time
of A* lasso with a small reduction in the quality of solution. We also considered other strategies
such as inflating heuristics [10] and pruning edges in preprocessing with lasso, but such strategies
substantially reduced the quality of solutions.

4 Experiments
4.1 Simulation Study

We perform simulation studies in order to evaluate the accuracy of the estimated structures and
measure the computation time of our method. We created several small networks under 20 nodes and
obtained the structure of several benchmark networks between 27 and 56 nodes from the Bayesian
Network Repository (the left-most column in Table 1). In addition, we used the tiling technique [18]
to generate two networks of approximately 300 nodes so that we could evaluate our method on
larger graphs. Given the Bayesian network structures, we set the parameters βj for each conditional
probability distribution of node vj such that βjk ∼ ±Uniform[l, u] for predetermined values for u
and l if node vk is a parent of node vj and βjk = 0 otherwise. We then generated data from each
Bayesian network by forward sampling with noise ε ∼ N(0, 1) in the regression model, given the
true variable ordering. All data were mean-centered.

We compare our method to several other methods including DP with lasso for an exact method,
L1MB for heuristic search, and SBN for an optimization-based approximate method. We down-
loaded the software implementations of L1MB and SBN from the authors’ website. For L1MB,
we increased the authors’ recommended number of evaluations 2500 to 10 000 in Stage 2 heuristic
search for all networks except the two larger networks of around 300 nodes (Alarm 2 and Hailfinder
2), where we used two different settings of 50 000 and 100 000 evaluations. We also evaluated A*
lasso with the heuristic scheme with the queue sizes of 5, 100, 200, and 1000.

DP, A* lasso, and A* lasso with a limited queue size require a selection of the regularization pa-
rameter λ with cross-validation. In order to determine the optimal value for λ, for different values
of λ, we trained a model on a training set, performed an ordinary least squares re-estimation of the
non-zero elements of βj to remove the bias introduced by the L1 penalty, and computed prediction
errors on the validation set. Then, we selected the value of λ that gives the smallest prediction error
as the optimal λ. We used a training set of 200 samples for relatively small networks with under

6



0 0.5 1
0

0.5

1

Recall

P
re

ci
si

on

Factors

 

 

L1MB
SBN
A*−Qlim=100
A*−Qlim=200
A*−Qlim=1000

0 0.5 1
0

0.5

1

Recall

P
re

ci
si

on

Alarm

 

 

L1MB
SBN
A*−Qlim=100
A*−Qlim=200
A*−Qlim=1000

0 0.5 1
0

0.5

1

Recall

P
re

ci
si

on

Barley

 

 

L1MB
SBN
A*−Qlim=100
A*−Qlim=200
A*−Qlim=1000

0 0.5 1
0

0.5

1

Recall

P
re

ci
si

on

Hailfinder

 

 

L1MB
SBN
A*−Qlim=100
A*−Qlim=200
A*−Qlim=1000

0 0.5 1
0

0.5

1

Recall

P
re

ci
si

on

Insurance

 

 

L1MB
SBN
A*−Qlim=100
A*−Qlim=200
A*−Qlim=1000

0 0.5 1
0

0.5

1

Recall

P
re

ci
si

on

Mildew

 

 

L1MB
SBN
A*−Qlim=100
A*−Qlim=200
A*−Qlim=1000

0 0.5 1
0

0.5

1

Recall

P
re

ci
si

on

Water

 

 

L1MB
SBN
A*−Qlim=100
A*−Qlim=200
A*−Qlim=1000

0 0.5 1
0

0.5

1

Recall

P
re

ci
si

on

Alarm 2

 

 

L1MB−5e4
L1MB−1e5
SBN
A*−Qlim=5
A*−Qlim=100

0 0.5 1
0

0.5

1

Recall

P
re

ci
si

on

Hailfinder 2

 

 

L1MB−5e4
L1MB−1e5
SBN
A*−Qlim=5
A*−Qlim=100

Figure 2: Precision/recall curves for the recovery of skeletons of benchmark Bayesian networks.
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Figure 3: Precision/recall curves for the recovery of v-structures of benchmark Bayesian networks.

60 nodes and a training set of 500 samples for the two large networks with around 300 nodes. We
used a validation set of 500 samples. For L1MB and SBN, we used a similar strategy to select the
regularization parameters, while mainly following the strategy suggested by the authors and in their
software implementation.

We present the computation time for the different methods in Table 1. For DP, A* lasso, and A* lasso
with limited queue sizes, we also record the number of states visited in the search space in paren-
theses in Table 1. All methods were implemented in Matlab and were run on computers with 2.4
GHz processors. We used a dataset generated from a true model with βjk ∼ ±Uniform[1.2, 1.5].
It can be seen from Table 1 that DP considers all possible states 2|V | in the search space that grows
exponentially with the number of nodes. It is clear that A* lasso visits significantly fewer states
than DP, visiting about 10% of the number of states in DP for the funnel and galaxy networks. We
were unable to obtain the computation time for A* lasso and DP for some of the larger graphs in
Table 1 as they required significantly more time. Limiting the size of queue in A* lasso reduces
both the computation time and the number of states visited. For smaller graphs, we do not report the
computation time for A* lasso with limited queue size, since it is identical to the full A* lasso. We
notice that the computation time for A* lasso with a small queue of 5 or 100 is comparable to that
of L1MB and SBN.

In general, we found that the extent of pruning of the search space by A* lasso compared to DP
depends on the strengths of edges (βj values) in the true model. We applied DP and A* lasso to
datasets of 200 samples generated from each of the networks under each of the three settings for the
true edge strengths, ±Uniform[1.2, 1.5], ±Uniform[1, 1.2], and ±Uniform[0.8, 1]. As can be
seen from the computation time and the number of states visited by DP and A* lasso in Table 2, as
the strengths of edges increase, the number of states visited by A* lasso and the computation time
tend to decrease. The results in Table 2 indicate that the efficiency of A* lasso is affected by the
signal-to-noise ratio.
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Figure 4: Prediction errors
for benchmark Bayesian net-
works. The x-axis labels
indicate different benchmark
Bayesian networks for 1: Fac-
tors, 2: Alarm, 3: Barley, 4:
Hailfinder, 5: Insurance, 6:
Mildew, 7: Water, 8: Alarm 2,
and 9: Hailfinder 2.

In order to evaluate the accuracy of the Bayesian network struc-
tures recovered by each method, we make use of the fact that two
Bayesian network structures are indistinguishable if they belong to
the same equivalence class, where an equivalence class is defined
as the set of networks with the same skeleton and v-structures. The
skeleton of a Bayesian network is defined as the edge connectivi-
ties ignoring edge directions and a v-structure is defined as the lo-
cal graph structure over three variables, with two variables pointing
to the other variables (i.e., A → B ← C). We evaluate the per-
formance of the different methods by comparing the estimated net-
work structure with the true network structure in terms of skeleton
and v-structures and computing the precision and recall.

The precision/recall curves for the skeleton and v-structures of
the models estimated by the different methods are shown in Fig-
ures 2 and 3, respectively. Each curve was obtained as an average
over the results from 30 different datasets for the two large graphs
(Alarm 2 and Hailfinder 2) and from 50 different datasets for all
the other Bayesian networks. All data were simulated under the
setting βjk ∼ ±Uniform[0.4, 0.7]. For the benchmark Bayesian
networks, we used A* lasso with different queue sizes, including 100, 200, and 1000, whereas for
the two large networks (Alarm 2 and Hailfinder 2) that require more computation time, we used A*
lasso with queue size of 5 and 100. As can be seen in Figures 2 and 3, all methods perform relatively
well on identifying the true skeletons, but find it significantly more challenging to recover the true
v-structures. We find that although increasing the size of queues in A* lasso generally improves the
performance, even with smaller queue sizes, A* lasso outperforms L1MB and SNB in most of the
networks. While A* lasso with a limited queue size preforms consistently well on smaller networks,
it significantly outperforms the other methods on the larger graphs such as Alarm 2 and Hailfinder
2, even with a queue size of 5 and even when the number of evaluations for L1MB has been in-
creased to 50 000 and 100 000. This demonstrates that while limiting the queue size in A* lasso
will not guarantee the optimality of the solution, it still reduces the computation time of A* lasso
dramatically without substantially compromising the quality of solution. In addition, we compare
the performance of the different methods in terms of prediction errors on independent test dataset in
Figure 4. We find that the prediction errors of A* lasso are consistently lower even with a limited
queue size.

4.2 Analysis of S&P Stock Data
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Figure 5: Prediction er-
rors for S&P stock price
data.

We applied the methods on the daily stock price data of the S&P 500
companies to learn a Bayesian network that models the dependencies
in prices among different stocks. We obtained the stock prices of 125
companies over 1500 time points between Jan 3, 2007 and Dec 17, 2012.
We estimated a Bayesian network using the first 1000 time points with
the different methods, and then computed prediction errors on the last
500 time points. For L1MB, we used two settings for the number of
evaluations, 50 000 and 100 000. We applied A* lasso with different
queue limits of 5, 100, and 200. The prediction accuracies for the various
methods are shown in Figure 5. Our method obtains lower prediction
errors than the other methods, even with the smaller queue sizes.

5 Conclusions
In this paper, we considered the problem of learning a Bayesian network structure and proposed
A* lasso that guarantees the optimality of the solution while reducing the computational time of
the well-known exact methods based on DP. We proposed a simple heuristic scheme that further
improves the computation time but does not significantly reduce the quality of solution.
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