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SMOOTHING PROXIMAL GRADIENT METHOD FOR
GENERAL STRUCTURED SPARSE REGRESSION

By X1 CHEN , QIHANG LIN, SEYOUNG KiM , JAIME G. CARBONELL
AND ERriC P. XING*

Carnegie Mellon University

We study the problem of estimating high dimensional regression
models regularized by a structured sparsity-inducing penalty that
encodes prior structural information on either the input or output
variables. We consider two widely adopted types of penalties of this
kind as motivating examples: 1) the general overlapping-group-lasso
penalty, generalized from the group-lasso penalty; and 2) the graph-
guided-fused-lasso penalty, generalized from the fused-lasso penalty.
For both types of penalties, due to their non-separability and non-
smoothness, developing an efficient optimization method remains a
challenging problem. In this paper, we propose a general optimization
approach, the smoothing prozimal gradient (SPG) method, which can
solve structured sparse regression problems with any smooth convex
loss under a wide spectrum of structured sparsity-inducing penalties.
Our approach combines a smoothing technique with effective prox-
imal gradient method. It achieves a convergence rate significantly
faster than the standard first-order methods, subgradient methods,
and is much more scalable than the most widely used interior-point
methods. The efficiency and scalability of our method are demon-
strated on both simulation experiments and real genetic datasets.

1. Introduction. The problem of high-dimensional sparse feature learn-
ing arises in many areas in science and engineering. In a typical setting such
as linear regression, the input signal leading to a response (i.e., the output)
lies in a high-dimensional space, and one is interested in selecting a small
number of truly relevant variables in the input that influence the output. A
popular approach to achieve this goal is to jointly optimize the fitness loss
function with a non-smooth ¢1-norm penalty (e.g., Lasso (Tibshirani, 1996))
that shrinks the coefficients of the irrelevant input variables to zero. However,
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this approach is limited in that it is incapable of capturing any structural
information among the input variables. Recently, various extensions of the
f1-norm lasso penalty have been introduced to take advantage of the prior
knowledge of the structures among inputs to encourage closely related in-
puts to be selected jointly (Yuan and Lin, 2006; Tibshirani and Saunders,
2005; Jenatton et al., 2009). Similar ideas have also been explored to lever-
age the output structures in multivariate-response regression (or multi-task
regression), where one is interested in estimating multiple related functional
mappings from a common input space to multiple outputs (Obozinski et al.,
2009; Kim and Xing, 2009, 2010). In this case, the structure over the out-
puts is available as prior knowledge, and the closely related outputs accord-
ing to this structure are encouraged to share a similar set of relevant inputs.
These progresses notwithstanding, the development of efficient optimization
methods for solving the estimation problems resultant from the structured
sparsity-inducing penalty functions remains a challenge for reasons we will
discuss bellow. In this paper, we address the problem of developing effi-
cient optimization methods that can handle a broad family of structured
sparsity-inducing penalties with complex structures.

When the structure to be imposed during shrinkage has a relatively sim-
ple form, such as non-overlapping groups over variables (e.g., group lasso
(Yuan and Lin, 2006)), or a linear-ordering (a.k.a., chain) of variables (e.g.,
fused lasso (Tibshirani and Saunders, 2005)), efficient optimization methods
have been developed. For example, under group lasso, due to the separabil-
ity among groups, a prozimal operator' associated with the penalty can
be computed in closed-form; thus, a number of composite gradient methods
(Beck and Teboulle, 2009; Nesterov, 2007; Liu et al., 2009) that leverage the
proximal operator as a key step (so-called “proximal gradient method”) can
be directly applied. For fused lasso, although the penalty is not separable,
a coordinate descent algorithm was shown feasible by explicitly leveraging
the linear ordering of the inputs (Friedman et al., 2007).

Unfortunately, these algorithmic advancements have been outpaced by
the emergence of more complex structures one would like to impose during
shrinkage. For example, in order to handle a more general class of struc-
tures such as a tree or a graph over variables, various regression models
that further extend the group lasso and fused lasso ideas have been re-
cently proposed. Specifically, rather than assuming the variable groups to
be non-overlapping as in the standard group lasso, the overlapping group
lasso (Jenatton et al., 2009) allows each input variable to belong to multi-

IThe proximal operator associated with the penalty is defined as: arg ming %Hﬁ —V||% +
P(B3), where v is any given vector and P(3) is the non-smooth penalty.
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ple groups, thereby introducing overlaps among groups and enabling incor-
poration of more complex prior knowledge on the structure. Going beyond
the standard fused lasso, the graph-guided fused lasso extends the original
chain structure over variables to a general graph over variables, where the
fused-lasso penalty is applied to each edge of the graph (Kim et al., 2009).
Due to the non-separability of the penalty terms resultant from the over-
lapping group or graph structures in these new models, the aforementioned
fast optimization methods originally tailored for the standard group lasso or
fused lasso cannot be readily applied here, due to, for example, unavailabil-
ity of a closed-form solution of the proximal operator. In principle, generic
convex optimization solvers such as the interior-point methods (IPM) could
always be used to solve either a second-order cone programming (SOCP) or
a quadratic programming (QP) formulation of the aforementioned problems;
but such approaches are computationally prohibitive for problems of even a
moderate size. Very recently, a great deal of attentions have been given to de-
vise practical solutions to the complex structured sparse regression problems
discussed above in statistics and machine learning community, and numer-
ous methods have been proposed (Jenatton et al., 2010; Mairal et al., 2010;
Duchi and Singer, 2009; Liu et al., 2010; Zhou and Lange, 2011; Tibshirani and Taylor,
2010). All of these recent works strived to provide clever solutions to various
subclasses of the structured sparsity-inducing penalties; but, as we survey
in Section 4, they are still short of reaching a simple, unified, and general
solution to a broad class of structured sparse regression problems.

In this paper, we propose a generic optimization approach, the smooth-
ing prozimal gradient (SPG) method, for dealing with a broad family of
sparsity-inducing penalties of complex structures. We use the overlapping-
group-lasso penalty and graph-guided-fused-lasso penalty mentioned above
as our motivating examples. Although these two types of penalties are
seemingly very different, we show that it is possible to decouple the non-
separable terms in both penalties via the dual norm; and reformulate them
into a common form to which the proposed method can be applied. We
call our approach a “smoothing” proximal gradient method because in-
stead of optimizing the original objective function directly as in other prox-
imal gradient methods, we introduce a smooth approximation to the struc-
tured sparsity-inducing penalty using the technique from Nesterov (2005).
Then, we solve the smoothed surrogate problem by a first-order proximal
gradient method known as the fast iterative shrinkage-thresholding algo-
rithm (FISTA)(Beck and Teboulle, 2009). We show that although we solve
a smoothed problem, when the smoothness parameter is carefully chosen,
SPG achieves a convergence rate of O(%) for the original objective for any
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desired accuracy €. Below, we summarize the main advantages of this ap-
proach:

(a) It is a first-order method, as it uses only the gradient information. Thus,
it is significantly more scalable than IPM for SOCP or QP. Since it is
gradient-based, it allows warm restarts, thereby potentiates solving the
problem along the entire regularization path (Friedman et al., 2007).

(b) Tt is applicable to a wide class of optimization problems with a smooth
convex loss and a non-smooth non-separable structured sparsity-inducing
penalty. Additionally, it is applicable to both uni- and multi-task sparse
structured regression, with structures on either (or both) inputs/outputs.

(¢) Theoretically, it enjoys a convergence rate of O(%), which dominates that
of the standard first-order method such as subgradient method whose
rate is of O(e%)

(d) Finally, SPG is easy to implement with a few lines of MATLAB code.

The idea of constructing a smoothing approximation to a difficult-to-
optimize objective function has also been adopted in another widely used
optimization framework known as majorization-minimization (MM) (Lange,
2004). Using the quadratic surrogate functions for the fo-norm and fused-
lasso penalty as derived in Wu and Lange (2008) and Zhang et al. (2010),
one can also apply MM to solve the structured sparse regression problems.
We will discuss in detail the connections between our methods and MM in
Section 4.

The rest of this paper is organized as follows. In Section 2, we present
the formulation of overlapping group lasso and graph-guided fused lasso. In
Section 3, we present the SPG method along with complexity results. In
Section 4, we discuss the connections between our method and MM, and
comparisons with other related methods. In Section 5, we extend our al-
gorithm to multivariate-task regression. In Section 6, we present numerical
results on both simulated and real datasets, followed by conclusions in Sec-
tion 7. Throughout the paper, we will discuss overlapping-group-lasso and
graph-guided-fused-lasso penalties in parallel to illustrate how the SPG can
be used to solve the corresponding optimization problems generically.

2. Background: Linear Regression Regularized by Structured
Sparsity-inducing Penalties. We begin with a basic outline of the high-
dimensional linear regression model, regularized by structured sparsity-inducing
penalties.

Consider a data set of N feature/response (i.e., input/output) pairs,
{Xn,Yn}, n =1,...,N. Let X € RV*/ denote the matrix of inputs of the
N samples, where each sample lies in a J-dimensional space; and y € RV*1
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denote the vector of uni-variate outputs of the N sample. Under a linear
regression model, y = X3 + €, where 3 represents the vector of length
J for the regression coefficients, and € is the vector of length N for noise
distributed as N (0,02« x). The well known Lasso regression (Tibshirani,
1996) obtains a sparse estimate of the coefficients by solving the following
optimization problem:

(2.1) Snin, 9(8) + A8,

where g(8) = %lly — XBI|3 is the squared-error loss, ||8]l1 = >/, |3;] is
the /1-norm penalty that encourages the solutions to be sparse, and A is the
regularization parameter that controls the sparsity level.

The standard lasso penalty does not assume any structure among the
input variables, which limits its applicability to complex high-dimensional
scenarios in many applied problems. More structured constraints on the in-
put variables such as groupness or pairwise similarities can be introduced by
employing a more sophisticated sparsity-inducing penalty that induces joint
sparsity patterns among related inputs. We generically denote the struc-
tured sparsity-inducing penalty by Q(3) without assuming a specific form,
and define the problem of estimating a structured sparsity pattern of the
coefficients as follows:

(2.2) min f(8) = g(8) + Q(B) + Al|B])1-
BERY

In this paper, we consider two types of 2(3) that capture two differ-
ent kinds of structural constraints over variables, namely, the overlapping-
group-lasso penalty based on the ¢; /¢ mixed-norm, and the graph-guided-
fused-lasso penalty based on a total variation norm. As we discuss below,
these two types of penalties represent a broad family of structured sparsity-
inducing penalties recently introduced in the literature (Yuan and Lin, 2006;
Jenatton et al., 2009; Kim and Xing, 2010; Zhao et al., 2009a; Tibshirani and Saunders,
2005; Kim et al., 2009). It is noteworthy that in problem (2.2), in addition to
the structured-sparsity-inducing penalty Q(3), there is also an ¢;-regularizer
A||B|l1 that explicitly enforces sparsity on every individual features. The SPG
optimization algorithm to be presented in this paper is applicable regardless
of the presence or absence of the A||3||; term.

1. Overlapping-group-lasso penalty
Given prior knowledge of (possibly overlapping) grouping of variables
or features, if it is desirable to encourage coefficients of features within
the same group to be shrunk to zero jointly, then a composite struc-
tured penalty of the following form can be used:
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(2.3) QB) =7 wyllByll2,

geg

where G = {¢g1,..., g|g|} denotes the set of groups, which is a subset
of the power set of {1,...,J}; B, € RI9! is the subvector of B for the
features in group g¢; wy is the predefined weight for group g; and || - ||2
is the vector fo-norm. This ¢; /¢35 mixed-norm penalty plays the role
of jointly setting all of the coefficients within each group to zero or
non-zero values. The widely used hierarchical tree-structured penalty
(Zhao et al., 2009b; Kim and Xing, 2010) is a special case of (2.3), of
which the groups are defined as a nested set under a tree hierarchy.
It is noteworthy that the ¢; /{+ mixed-norm penalty can also achieve
a similar grouping effect. Indeed our approach can also be applied to
the /1 /¢~ penalty, but for simplicity here we focus on only the ¢1 /s
penalty and the comparison between the ¢; /¢35 and the ¢1 /{+, is beyond
the scope of the paper.

Apparently, the penalty Q(8) = 73 cg wyllB,ll2 alone enforces only
group-level sparsity but not sparsity within each group. More precisely,
if the estimated ”BQHQ # 0, each Bj for j € g will be non-zero. By using
an additional ¢;-regularizer A||B||; together with Q(83) as in (2.2), one
can not only select groups but also variables within each group. The
readers may refer to Friedman et al. (2010) for more details.

. Graph-guided-fused-lasso penalty

Alternatively, prior knowledge about the structural constraints over
features can be in the form of their pairwise relatedness described by
a graph G = (V, E), where V = {1, ..., J} denotes the variables or fea-
tures of interest, and E denotes the set of edges among V. Additionally,
we let r,,,;; € R denote the weight of the edge e = (m,l) € E, corre-
sponding to correlation or other proper similarity measures between
features m and [. If it is desirable to encourage coefficients of related
features to share similar magnitude, then the graph-guided-fused-lasso
penalty (Kim et al., 2009) of the following form can be used:

(2.4) QB) =~ > T (i) | Bm — sign(rm) Bil,

e=(m,l)eE,m<l

where 7(7,,;) represent a general weight function that enforces a fusion
effect over coefficients (3,, and §; of relevant features. In this paper, we
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consider 7(r) = |r|, but any monotonically increasing function of the
absolute values of correlations can be used.

The sign(r,,;) in (2.4) ensures that two positively correlated inputs
would tend to influence the output in the same direction, whereas two
negatively correlated inputs impose opposite effect. Since the fusion
effect is calibrated by the edge weight, the graph-guided-fused-lasso
penalty in (2.4) encourages highly inter-correlated inputs correspond-
ing to a densely connected subnetwork in G to be jointly selected as
relevant.

It is noteworthy that when r,,; = 1 for all e = (m,l) € E, and G is
simply a chain over nodes, we have:

J-1
(2.5) QB) =7 18j+1 — Bl
=1

which is identical to the standard fused lasso penalty (Tibshirani and Saunders,
2005).

3. Smoothing Proximal Gradient. Although (2.2) defines a convex
program, of which globally optimal solution to B is attainable, the main
difficulty in solving (2.2) arises from the non-separability of elements of 3
in the non-smooth penalty function (3). As we show in the next sub-
section, although the overlapping-group-lasso and graph-guided-fused-lasso
penalties are seemingly very different, we can reformulate the two types of
penalties as a common matrix algebraic form, to which a generic Nesterov
smoothing technique can be applied. The key in our approach is to decou-
ple the non-separable structured sparsity-inducing penalties into a simple
linear transformation of B3 via the dual norm. Based on that, we introduce
a smooth approximation to €(83) using the technique from Nesterov (2005)
such that its gradient with respect to 8 can be easily calculated.

3.1. Reformulation of Structured Sparsity-inducing Penalty. In this sec-
tion, we show that utilizing the dual norm, the non-separable structured
sparsity-inducing penalty in both (2.3) and (2.4) can be decoupled; and
reformulated into a common form as a maximization problem over the aux-
iliary variables.

1. Reformulating overlapping-group-lasso penalty
Since the dual norm of an f2-norm is also £o-norm, we can write ||3,||2

as [|B,ll2 = max|q, |,<1 ag’,@g, where o, € RlI9 is a vector of auxiliary

T
variables associated with 8,. Let a = agl, e ,aag‘} . Then, a is a
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vector of length 3 |g| with domain Q = {a | [loyll2 < 1, Vg € G},
where Q is the Cartesian product of unit balls in Euclidean space and
therefore, a closed and convex set. We can rewrite the overlapping-
group-lasso penalty in (2.3) as:
(3.1)

Q(B) =7 wy max agBy =max  ywye By = maxa’CB,

g€y 9€g

where C € Rzgeg 197 45 2 matrix defined as follows. The rows of C
are indexed by all pairs of (i,9) € {(4,9)|i € g,i € {1,...,J}, g € G},
the columns are indexed by j € {1,...,J}, and each element of C' is
given as:

(3.2) Clig).g 0 otherwise.

_ { ywg if i =7,
Note that C' is a highly sparse matrix with only a single non-zero ele-
ment in each row and ) g |g| non-zero elements in the entire matrix,
and hence, can be stored with only a small amount of memory during
the optimization procedure.
. Reformulating graph-guided-fused-lasso penalty
First, we rewrite the graph-guided-fused-lasso penalty in (2.4) as fol-
lows:

Y Z T(Tml)|ﬁm - Sign(rml)ﬂ” = HCBHL

e=(m,l)eE,m<l

where C' € RIZI%/ is the edge-vertex incident matrix:

¥ T(Tmi) if j=m
(3.3) Coe(mi); = —7 - sign(rop)7(rp) ifj=1
0 otherwise.

Again, we note that C' is a highly sparse matrix with 2 - |E| non-zero
elements. Since the dual norm of the /,,-norm is the #;-norm, we can
further rewrite the graph-guided-fused-lasso penalty as:

(3.4) ICBl = max oTCB,

ledloo<1

where a € Q = {al||ale < 1,a € RIFI} is a vector of auxiliary
variables associated with ||C 8|1, and || - ||ec is the s-norm defined as
the maximum absolute value of all entries in the vector.

REMARK 1. As a generalization of graph-guided-fused-lasso penalty,
the proposed optimization method can be applied to the £1-norm of any

linear mapping of B (i.e., QB) = ||CB||1 for any given C ).
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3.2. Smooth Approximation to Structured Sparsity-inducing Penalty. The
common formulation of Q(3) given above (i.e., Q(B) = maxqco a’CPB) is
still a non-smooth function of 3, and this makes the optimization challeng-
ing. To tackle this problem, using the technique from Nesterov (2005), we
construct a smooth approximation to Q(3) as following:

(3.5) fu(B) = max (o' CB — pd(a)) .

where p is a positive smoothness parameter and d(a) is a smoothing function
defined as %||c||3. The original penalty term can be viewed as f,(8) with
p = 0; and one can verify that f,(3) is a lower bound of fy(3). In order
to bound the gap between f,(8) and fo(3), let D = maxqcod(ex). In our
problems, D = |G|/2 for the overlapping-group-lasso penalty and D = |E|/2
for the graph-guided-fused-lasso penalty. Then, it is easy to verify that the
maximum gap between f,(8) and fo(B3) is uD:

fo(B) = uD < fu(B) < fo(B).

From Theorem 1 as presented below, we know that f,(8) is a smooth func-
tion for any pu > 0. Therefore, f,(8) can be viewed as a smooth approxi-
mation to fo(B) with a maximum gap of puD; and the p controls the gap
between f,,(83) and fo(B3). Given a desired accuracy €, the convergence result
in Section 3.5 suggests u = 5% to achieve the best convergence rate.

Now we present the key theorem (Nesterov, 2005) to show that f,(8) is
smooth in 3 with a simple form of the gradient.

THEOREM 1. For any p > 0, f.(B) is a conver and continuously-
differentiable function in B, and the gradient of f,,(B) takes the following
form:

(3.6) ViuB)=CTar,

where a* is the optimal solution to (3.5). Moreover, the gradient V f,(B) is
Lipschitz continuous with the Lipschitz constant L,, = iHC’HQ, where ||C|| is

the matriz spectral norm of C defined as ||C|| = maxy|,<1 [|CV||2.

By viewing f,,(3) as the Fenchel Conjugate of d(-) at %, the smoothness
can be obtained by applying Theorem 26.3 in Rockafellar (1996). The gra-
dient in (3.6) can be derived from the Danskin’s Theorem (Bertsekas, 1999)
and the Lipschitz constant is shown in Nesterov (2005). The details of the
proof are given in the appendix.
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Fic 1. A geometric illustration of the smoothness of f.(83). (a) The 3-D plot of
z(a, B), (b) the projection of (a) onto the B-z space, (c¢) the 3-D plot of zs(«, ),
and (d) the projection of (¢) onto the B-z space.

Geometric illustration of Theorem 1 To provide insights on why
fu(B) is a smooth function as Theorem 1 suggests, in Figure 1, we show
a geometric illustration for the case of one-dimensional parameter (i.e.,
B € R) with ¢ and C set to 1. First, we show geometrically that fo(5) =
maX,e(—1,1) 2(a, 3) with z(a, 3) = af is a non-smooth function. The three-
dimensional plot for z(«, ) with « restricted to [—1,1] is shown in Fig-
ure 1(a). We project the surface in Figure 1(a) onto the 5 — z space as
shown in Figure 1(b). For each 3, the value of fy(3) is the highest point
along the z-axis since we maximize over « in [—1,1]. We can see that fo(/3)
is composed of two segments with a sharp point at 8 = 0 and hence is
non-smooth. Now, we introduce d(a) = %az, let zs(a, B) = aff — %aQ and
fu(B) = max,e(_1 1) 2s(c, 3). The three-dimensional plot for zs(a, 3) with
restricted to [—1, 1] is shown in Figure 1(c). Similarly, we project the surface
in Figure 1(c) onto the 5 — zs space as shown in Figure 1(d). For fixed 3, the
value of f,,(3) is the highest point along the z-axis. In Figure 1(d), we can
see that the sharp point at # = 0 is removed and f, (/) becomes smooth.

To compute the V f,(3) and L, we need to know a* and ||C||. We present
the closed-form equations for a* and ||C]| for the overlapping-group-lasso
penalty and graph-guided-fused-lasso penalty in the following propositions.
The proof is presented in the appendix.

1. o under overlapping-group-lasso penalty

PROPOSITION 1. Let a*, which is composed of {a }seg, be the opti-
mal solution to (3.5) for the overlapping-group-lasso penalty in (2.3).
For any g € G,

'7wg/69

a’'=S
s

g

);
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where S is the projection operator which projects any vector u to the

ly ball:
S(u) = { Tl [allz > 1,
w <t
In addition, we have ||C|| = ymax;cqy,.. 1y \/deg » jeg(wg)Q'

2. o under graph-guided-fused-lasso penalty

PROPOSITION 2. Let o™ be the optimal solution of (3.5) for graph-
guided-fused-lasso penalty in (2.4). Then, we have:

oB

a* =S5
(u

),

where S is the projection operator defined as follows:

x, if —-1<z<1
S(x)y=4q1, if z>1
1, if z< -1

For any vector a, S(a) is defined as applying S on each and every
entry of a.

|C|| is upper-bounded by /2v? maxjcy d;, where

(3.7) d; = Z (r(re))”

e€E s.t. e incident on j

forj € V in graph G, and this bound is tight. Note that when 7(r.) =1
for all e € E, d; is simply the degree of the node j.

3.3. Smoothing Prozimal Gradient Descent. Given the smooth approx-
imation to the non-smooth structured sparsity-inducing penalties, now, we
apply the fast iterative shrinkage-thresholding algorithm (FISTA) (Beck and Teboulle,
2009; Tseng, 2008) to solve a generically reformulated optimization problem,
using the gradient information from Theorem 1. We substitute the penalty
term Q(3) in (2.2) with its smooth approximation f,(8) to obtain the fol-
lowing optimization problem:

(3.8) min f(8) = 9(8) + fu(B) + Bl
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Algorithm 1 Smoothing Proximal Gradient Descent (SPG) for Structured
Sparse Regression

Input: X, y, C, 8°, Lipschitz constant L, desired accuracy e.
Initialization: set y = ;& where D = maxaco 3|la|3 (D = [G|/2 for the
overlapping-group-lasso penalty and D = |E|/2 for the graph-guided-fused-lasso
penalty), 6 = 1, w" = 3°.
Iterate For t = 0,1,2,..., until convergence of 3':

1. Compute Vh(w") according to (3.10).

2. Solve the proximal operator associated with the ¢1-norm:
(3.12)

B = argﬁmin Qu(B,w') = h(w') + (B — w', VA(w")) + Al Bl + gllﬁ - w3

3. Set 9t+1 = H’%
4. Set wiTt =i+ 4 %Gt_._l(ﬁ“'l — 8.

Output: B =gttt

Let

(3.9 h(B) = 9(8) + £u(8) = 3y — XBIB + u(8).

be the smooth part of f(3). According to Theorem 1, the gradient of h(3)
is given as:

(3.10) Vh(B) =XT(XB —y)+ CTa .
Moreover, Vh(3) is Lipschitz-continuous with the Lipschitz constant:

Ic?

(3.11) L = Apax(XTX) + L, = Apax (XTX) + ;

where Apax(XTX) is the largest eigenvalue of (X7X).

Since f| (B) only involves a very simple non-smooth part (i.e., the ¢;-norm
penalty), we can adopt FISTA (Beck and Teboulle, 2009) to minimize f(3)
as shown in Algorithm 1. Algorithm 1 alternates between the sequences {w'}
and {,Bt} and 0; can be viewed as a special “step-size”, which determines the
relationship between {w'} and {B'} as in Step 4 of Algorithm 1. As shown
in Beck and Teboulle (2009), such a way of setting 6; leads to Lemma 1 in
Appendix, which further guarantees the convergence result in Theorem 2.

Rewriting Q1 (3, w!) in (3.12):

1 1 A
QL(B, W) = 5118~ (w' = LVAW)I3 + 18l
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Let v = (w! — $Vh(w?)), the closed-form solution for B"*! can be obtained
by soft-thresholding (Friedman et al., 2007) as presented in the next propo-
sition.

ProprosiTION 3.  The closed-form solution of
1 A
min 318 = vI3 + 7 161

can be obtained by the soft-thresholding operation:

A

(3.13) Bj = sign(v;) max(0, |vj| — 7)),

j=1,...,J

An important advantage of using the proximal operator associated with
the f1-norm Qr(B,w') is that it can provide us with sparse solutions,
where the coefficients for irrelevant inputs are set exactly to zeros, due to
the soft-thresholding operation in (3.13). When the term A||3||; is not in-
cluded in the objective, for overlapping group lasso, we can only obtain
the group level sparsity but not the individual feature level sparsity in-
side each group. However, as for optimization, Algorithm 1 still applies in
the same way. The only difference is that Step 2 of Algorithm 1 becomes
B! = argming h(w') + (8 — w', VR(W")) + 58 — w'|[3 = w' — L Vh(w').
Since there is no soft-thresholding step, the obtained solution ,@ has no exact
zeros. We then need to set a threshold (e.g., 107°) and select the relevant
groups which contain the variables with the parameter above this threshold.

3.4. Issues on the Computation of the Lipschitz Constant. When J is
large, the computation of /\maX(XTX) and hence the Lipschitz constant L
could be very expensive. To further accelerate Algorithm 1, a line search
backtracking step could be used to dynamically assign a constant L; for
the proximal operator in each iteration (Beck and Teboulle, 2009). More
specifically, given any positive constant R, let

QB w') = h(w") + (8~ w', V(w!)) + N8l + 2 18— w'[3

and
B! = Br(wh) = argmin Qr(8, wh).
B

The key to guarantee the convergence rate of Algorithm 1 is to ensure that
the following inequality holds for each iteration:

(3.14) (B = h(B™Y) + N1 < Qr(BT,wh).
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It is easy to check when R is equal to the Lipschitz constant L, it will satisfy
the above inequality for any 8" and w'. However, when it is difficult to
compute the Lipschitz constant, instead of using a global constant L, we
could find a sequence {L;}7_, such that L;;1 satisfies the inequality (3.14)
for the t-th iteration. In particular, we start with any small constant L.
For each iteration, we find the smallest integer a € {0, 1,2, ...} such that by
setting Lyy1 = 7L where 7 > 1 is a pre-defined scaling factor, we have:

(3.15) F(Br,, (W) < Qroyy(Br,,, (W), w').
Then we set 7' = B8, (w') = argminQy, ., (B, w").

3.5. Convergence Rate and Time Complexity. Although we optimize the
approximation function f(8) rather than the original f(8) directly, it can
be proven that f (B) is sufficiently close to the optimal objective value of the
original function f(B*). The convergence rate of Algorithm 1 is presented

in the next theorem.

THEOREM 2. Let B* be the optimal solution to (2.2) and B' be the
approximate solution at the t-th iteration in Algorithm 1. If we require
f(BY) — f(B*) < € where f is the original objective, and set y = 55, then
the number of iterations t is upper-bounded by

(316) \/4Hﬂ* - 8°I3 (e (X7%) + 2DHCH2).

€ €

The key idea behind the proof of this theorem is to decompose f(3') —

£(8") into three parts: (i) £(8")— F(8"), (i) F(8")— F(B), and (iii) f(8")—
f(B%). (i) and (iii) can be bounded by the gap of the approximation uD; and
(ii) only involves the function fand can be upper bounded by O(t%) as shown
in Beck and Teboulle (2009). We obtain (3.16) by balancing these three
terms. The details of the proof are presented in the appendix. According
to Theorem 2, Algorithm 1 converges in O(@) iterations, which is much
faster than the subgradient method with the convergence rate of O(e%) Note
that the convergence rate depends on D through the term /2D, and the D

depends on the problem size.

REMARK 2. Since there is no line search in Algorithm 1, we cannot guar-
antee that the objective values are monotonically decreasing over iterations
theoretically. But empirically, based on our own experience, the objective
values always decrease over iterations. One simple strategy to guarantee the
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TABLE 1
Comparison of Per-iteration Time Complexity

Overlapping Group Lasso Graph-guided Fused Lasso
SPG O(Jmin(J,N) + > 5 lg]) O(Jmin(J,N) + |E|)
IPM | O ((7+1GD*(N + 3,6 l9) O ((J +|E)?)

~t4+1
monotone decreasing property is to first compute (3 o argming Qr(B, wl)

f(B).

t+1 _ :

and then set 3" = arg M G gy

REMARK 3. Theorem 2 only shows the convergence rate for the objective
value. As for the estimator B¢, since it is a convex optimization problem, it
is well known that B' will eventually converge to B*. However, the speed of
convergence of B' to 3* depends on the structure of the input X. If h(B3) is a
strongly convex function with the strongly convezity parameter o > 0. In our
problem, it is equivalent to saying that XX is a non-singular matriz with
the smallest eigenvalue o > 0. Then we can show that if f(B8%) — f(B*) < ¢

at the convergence, then ||3" — B[]z < 1/%. In other words, 3¢ converges to

B* in ly-distance at the rate of O(e%) For general high-dimensional sparse
learning problems with J > N, XTX is singular and hence the optimal
solution B* is not unique. In such a case, one can only show that 8% will
converge to one of the optimal solutions. But the speed of the convergence of
18" — B*||2 or its relationship with f(B") — f(B*) is widely recognized as an
open problem in optimization community.

As for the time complexity, the main computational cost in each iteration
comes from calculating the gradient Vh(w;). Therefore, SPG shares almost
the same per-iteration time as the subgradient descent but with a faster
convergence rate. In more details, if J < N and X”X and X’y can be pre-
computed and stored in memory, the computation of first part of Vhi(wy),
(XTX)w;—(XTy), takes the time complexity of O(J?). Otherwise, if J > N,
we can compute this part by X (Xw; —y) which takes the time complexity
of O(JN). As for the generic solver, IPM for SOCP for overlapping group
lasso or IPM for QP for graph-guided fused lasso, although it converges in
fewer iterations (i.e., log(2)), its per-iteration complexity is higher by orders
of magnitude than ours as shown in Table 1. In addition to time complexity,
IPM requires the pre-storage of X7X and each IPM iteration requires sig-
nificantly more memory to store the Newton linear system. Therefore, the
SPG is much more efficient and scalable for large-scale problems.
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3.6. Summary and Discussions. The insight of our work was drawn from
two lines of earlier works. The first one is the proximal gradient meth-
ods (e.g., Nesterov’s composite gradient method (Nesterov, 2007), FISTA
(Beck and Teboulle, 2009)). They have been widely adopted to solve opti-
mization problems with a convex loss and a relatively simple non-smooth
penalty, achieving O(ﬁ) convergence rate. However, the complex structure
of the non-separable penalties considered in this paper makes it intractable
to solve the proximal operator exactly. This is the challenge that we circum-
vent via smoothing.

The general idea of the smoothing technique used in this paper was first
introduced by Nesterov (2005). The algorithm presented in Nesterov (2005)
only works for smooth problems so that it has to smooth out the entire non-
smooth penalty. Our approach separates the simple non-smooth #;-norm
penalty from the complex structured sparsity-inducing penalties. In partic-
ular, when an £;-norm penalty is used to enforce the individual-feature-level
sparsity (which is especially necessary for fused lasso), we smooth out the
complex structured-sparsity-inducing penalty while leaving the simple ¢;-
norm as it is. One benefit of our approach is that it can lead to solutions
with exact zeros for irrelevant features due to the ¢1-norm penalty and hence
avoid the post-processing (i.e., truncation) step?. Moreover, the algorithm
in Nesterov (2005) requires the condition that 3 is bounded and that the
number of iterations is pre-defined, which are impractical for real applica-
tions.

As for the convergence rate, the gap between O (%) and the optimal
rate O(ﬁ) is due to the approximation of the structured sparsity-inducing
penalty. It is possible to show that if X has a full column rank, O(ﬁ) can
be achieved by a variant of excessive gap method (Nesterov, 2003). However,
such a rate cannot be easily obtained for sparse regression problems where
J > N. For some special cases as discussed in the next Section, such as
tree-structured or the ¢;/{+ mixed-norm based overlapping groups, O(ﬁ)
can be achieved at the expense of more computation time for solving the
proximal operator. It remains an open question whether we can further boost

the generally-applicable SPG method to achieve O(ﬁ)

*When there is no £1-norm penalty in the model (i.e., A = 0), our method still applies.
However, to conduct variable selection, as for other optimization methods (e.g., IPM), we
need a post-processing step to truncate parameters below a certain threshold to zeros.
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4. Related Optimization Methods.

4.1. Connections with Majorization-Minimization. The idea of construct-
ing a smoothing approximation has also been adopted in another widely used
optimization method, majorization-minimization (MM) for minimization
problem (or minorization-maximization for maximization problem) (Lange,
2004). To minimize a given objective, MM replaces the difficult-to-optimize
objective function with a simple (and smooth in most cases) surrogate func-
tion which majorizes the objective. It minimizes the surrogate function and
iterates such a procedure. The difference between our approach and MM is
that our approximation is a uniformly smooth lower bound of the objective
with a bounded gap; whereas the surrogate function in MM is an upper
bound of the objective. In addition, MM is an iterative procedure which
iteratively constructs and minimizes the surrogate function; while our ap-
proach constructs the smooth approximation once and then applies the prox-
imal gradient descent to optimize it. With the quadratic surrogate functions
for the /3-norm and fused-lasso penalty derived in Wu and Lange (2008)
and Zhang et al. (2010), one can easily apply MM to solve the structured
sparse regression problems. However, in our problems, the Hessian matrix
in the quadratic surrogate will no longer have a simple structure (e.g. tridi-
agonal symmetric structure in chain-structured fused signal approximator).
Therefore, one may need to apply the general optimization methods, e.g.,
conjugate-gradient or quasi-Newton method, to solve a series of quadratic
surrogate functions. In addition, since the objective functions considered
in our paper are neither smooth nor strictly convex, the local and global
convergence results for MM in Lange (2004) cannot be applied. It seems
to us still an open problem to derive the local, global convergence and the
convergence rate for MM for the general non-smooth convex optimization.

Recently, many first-order approaches have been developed for various
subclasses of overlapping group lasso and graph-guided fused lasso. Below,
we provide a survey of these methods:

4.2. Related work for mized-norm based group-lasso penalty. Most of the
existing optimization methods developed for mixed-norm penalties can han-
dle only a specific subclass of the general overlapping-group-lasso penalties.
Most of these methods use the proximal gradient framework (Beck and Teboulle,
2009; Nesterov, 2007) and focus on the issue of how to ezactly solve the
proximal operator. For non-overlapping groups with the ¢1/¢s or 1/l
mixed-norms, the proximal operator can be solved via a simple projec-
tion (Liu et al., 2009; Duchi and Singer, 2009). A one-pass coordinate as-
cent method has been developed for tree-structured groups with the ¢ /o
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TABLE 2
Comparisons of different first-order methods for optimizing mized-norm based
overlapping-group-lasso penalties.

Method No overlap [No overlap |Overlap Overlap Overlap Overlap
@1/@2 fl/foo Tree 51/52 Tree el/éoo ZI'/bZ;I'aI'y Arbitrary Zl/goc
Projection O(%), O(%/*)v
. € € N.A. N.A. N.A. N.A.
(Liu et al., 2009) |O(J) O(Jlog J)
Coordinate Ascent L L L L
(Jenattor.l et al., O(ﬁ% O(ﬁ)v O(ﬁ)v O(ﬁ% NA NA
2010; Lin and Ye,|O(J) O(Jlog 1) |O(3 glal) |00, g lallosla)
2010b)
O(5=)
Network Flow Vel 1 : 1 :
(Mairal et al., N.A. quadratic |y A O(72), auadratic| O(72), auadratic
2010) min-cost min-cost flow min-cost flow
flow
1

FOBOS 1 1 1 O(%), 1 .

i i O(%) O(%), O(¢), S o(=) quadratic
(Duchi and Singer, |O(1), O(J) e’ < < o lgl) | ~ae)

€ O(Jlog J O O 1 9€9g min-cost flo
2009) (Jlog J) O geqlal) (D ,eq lglloglgl) (subgradient) w
“re oy o |0 o), o), o), o),
A og ) o3 ol [0 g lalloslah |0 g lah |0 o lollog lgl)

or {1/l (Jenatton et al., 2010; Liu and Ye, 2010b), and quadratic min-cost
network flow for arbitrary overlapping groups with the ¢1 /¢, (Mairal et al.,
2010).

Table 2 summarizes the applicability, the convergence rate, and the per-
iteration time complexity for the available first-order methods for different
subclasses of group lasso penalties. More specifically, the methods in the
first three rows adopt the proximal gradient framework. The first column of
these rows gives the solver for the proximal operator. Each entry in Table
2 contains the convergence rate and the per-iteration time complexity. For
the sake of simplicity, for all methods, we omit the time for computing the
gradient of the loss function which is required for all of the methods (i.e.,
Vg(B) with O(J?)). The per-iteration time complexity in the table may come
from the computation of proximal operator or subgradient of the penalty.
“N.A.” stands for “not applicable” or no guarantee in the convergence. As
we can see from Table 2, although our method is not the most ideal one for
some of the special cases, our method along with FOBOS (Duchi and Singer,
2009) are the only generic first-order methods that can be applied to all
subclasses of the penalties.

As we can see from Table 2, for arbitrary overlaps with the ¢;/{, al-
though the method proposed in Mairal et al. (2010) achieves O(ﬁ) con-
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vergence rate, the per-iteration complexity can be high due to solving a
quadratic min-cost network flow problem. From the worst-case analysis,
the per-iteration time complexity for solving the network flow problem in
Mairal et al. (2010) is at least O(|V||E]) = O((J + |G (|G| +J + X 4eg 1)),
which is much higher than our method with O(}_ cg |g|log|g|). More im-
portantly, for the case of arbitrary overlaps with the ¢; /2, our method has
a superior convergence rate to all the other methods.

In addition to these methods, an active-set algorithm was proposed that
can be applied to the square of the ¢;/fs mixed-norm with overlapping
groups (Jenatton et al., 2009). This method formulates each subproblem in-
volving only the active variables either as an SOCP, which can be computa-
tionally expensive for a large active set, or as a jointly convex problem with
auxiliary variables, which is then solved by an alternating gradient descent.
The latter approach involves an expensive matrix inversion at each iteration
and lacks the global convergence rate. Another method (Liu and Ye, 2010a)
was proposed for overlapping group lasso which approximately solves the
proximal operator. However, the convergence of this type of approach can-
not be guaranteed, since the error introduced in each proximal operator will
be accumulated over iterations.

4.3. Related work for fused lasso. For the graph-guided-fused-lasso penalty,
when the structure is a simple chain, the pathwise coordinate descent method
(Friedman et al., 2007) can be applied. For the general graph structure, a
first-order method that approximately solves the proximal operator was pro-
posed in Liu et al. (2010). However, the convergence cannot be guaranteed
due to the errors introduced in computing the proximal operator over iter-
ations.

Recently, two different path algorithms have been proposed (Tibshirani and Taylor,
2010; Zhou and Lange, 2011) that can be used to solve the graph-guided
fused lasso as a special case. Unlike the traditional optimization methods
that solve the problem for a fixed regularization parameter, they solve the
entire path of solutions, and thus, has great practical advantages. In ad-
dition, for both methods, updating solutions from one hitting time to an-
other is computationally very cheap. More specifically, a QR decomposition
based updating scheme was proposed in Tibshirani and Taylor (2010) and
the updating in Zhou and Lange (2011) can be done by an efficient sweep
operation.

However, for high-dimensional data with J > N, the path algorithms can
have the following problems:

1. For a general design matrix X other than the identity matrix, the
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TABLE 3

Comparisons of different methods for optimizing graph-guided fused lasso

Method & Condition

Pre-processing Time

Per-iteration Time Com-
plexity

No. of Itera-
tions

(X full column rank, entire
path)

O (J3 + N(|E| + J) min((|E| + J), N)

O (min((|E| + J)2,N?))

H. Zhou & K. Lange

(Zhou and Lange, 2011) 3 9

(X full column rank, entire O(J%) o ((|E‘ +7) ) O(E+J)
path)

R. Tibshirani & J. Taylor

(Tibshirani and Taylor, 2010) O(|E| + J)

(lower bound)

R. Tibshirani & J. Taylor
(Tibshirani and Taylor, 2010)

O(E| + J)

rameter)

3 2 2 2
(X not full column rank, entire © (J + AN+ (1B + ) N) O(N?) (lower bound)
path )
SPG (single regularization pa- O(NJ2) 0(J2 + |E|) O(%)

method in Tibshirani and Taylor (2010) needs to first compute the
pseudo-inverse of X: X = (XTX)*X”, which could be computation-
ally expensive for large J.

. The original version of the algorithms in Tibshirani and Taylor (2010);

Zhou and Lange (2011) requires that X has a full column rank. When
J > N, although one can add an extra €||3||3 term, this changes the
original objective value especially when ¢ is large. For smaller ¢, the

matrix (X*)7X* with X* = is highly ill-conditioned; and hence

el
computing its inverse as the initilization step in Tibshirani and Taylor
(2010) is very difficult. There is no known result on how to balance
this trade-off.

. In both Tibshirani and Taylor (2010) and Zhou and Lange (2011), the

authors extend their algorithm to deal with the case when X does
not have a full column rank. The extended version requires a Gramm-
Schmidt process as the initialization which could take some extra time.

In Table 3, we present the comparisons for different methods. From our

analysis, the method in Zhou and Lange (2011) is more efficient than the

one in Tibshirani and Taylor (2010) since it avoids the heavy computation
of the pseudo-inverse of X. In practice, if X has a full column rank and one

is interested in solutions on the entire path, the method in Zhou and Lange
(2011) is very efficient and faster than our method. Instead, when J > N,
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Fic 2. Illustration of the multi-task regression with graph structure on outputs.

the path following methods may require a time-consuming pre-processing
procedure.

5. Extensions to Multi-task Regression with Structures on Out-
puts. The structured sparsity-inducing penalties as discussed in the previ-
ous section can be similarly used in the multi-task regression setting (Kim and Xing,
2010; Kim et al., 2009) where the prior structural information is available
for the outputs instead of inputs. For example, in genetic association anal-
ysis, where the goal is to discover few genetic variants or single nucleotide
polymorphisms (SNPs) out of millions of SNPs (inputs) that influence phe-
notypes (outputs) such as gene expression measurements, the correlation
structure of the phenotypes can be naturally represented as a graph, which
can be used to guide the selection of SNPs as shown in Figure 2. Then,
the graph-guided-fused-lasso penalty can be used to identify SNPs that are
relevant jointly to multiple related phenotypes.

In a sparse multi-task regression with structure on the output side, we
encounter the same difficulties of optimizing with non-smooth and non-
separable penalties as in the previous section, and the SPG can be extended
to this problem in a straightforward manner. Due to the importance of this
class of problems and its applications, in this section, we briefly discuss how
our method can be applied to the multi-task regression with structured-
sparsity-inducing penalties.

5.1. Multi-task Linear Regression Regularized by Structured Sparsity-inducing
Penalties. For the simplicity of illustration, we assume all different tasks
share the same input matrix. Let X € RV*7 denote the matrix of input
data for J inputs and Y € RV*X denote the matrix of output data for K
outputs over IV samples. We assume a linear regression model for each of the
k-th output: y, = X8, + €, Vk=1,...K, where B = [Bix, ..., Bx]7 is
the regression coefficient vector for the k-th output and € is Gaussian noise.
Let B = [B,...,8k] € R7”*X be the matrix of regression coefficients for
all of the K outputs. Then, the multi-task (or multivariate-response) struc-
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tured sparse regression problem can be naturally formulated as the following
optimization problem:

1
5.1 i B)=_||lY - XB|% +Q(B) + A\|B
(5.1) pluin f(B) =S 17+ ©2(B) + Al[B1,
where || - || denotes the matrix Frobenius norm, || - ||; denotes the matrix

entry-wise /1 norm, and Q(B) is a structured sparsity-inducing penalty with
a structure over the outputs.

1. Overlapping-group-lasso Penalty in Multi-task Regression
We define the overlapping-group-lasso penalty for a structured multi-
task regression as follows:

J
(5.2) QB) =y Z Z ngﬁng%

j=1g€g

where G = {g1,...,9|g|} is a subset of the power set of {1,..., K}
and 3,, is the vector of regression coeflicients correspond to outputs
in group ¢: {Bji, k € 9,9 € G}. Both the ¢;/¢, mixed-norm penalty
for multi-task regression in Obozinski et al. (2009) and tree-structured
overlapping-group-lasso penalty in Kim and Xing (2010) are special
cases of (5.2).

2. Graph-guided-fused-lasso Penalty in Multi-task Regression
Assuming that a graph structure over the K outputs is given as G
with a set of nodes V' = {1,..., K} each corresponding to an output
variable and a set of edges F, the graph-guided-fused-lasso penalty for
a structured multi-task regression is given as:

J
(53)  QB)=v > ()Y [Bjm — sign(rm)Byl.

e=(m,l)eE j=1

5.2. Smoothing Proximal Gradient Descent. Using the similar techniques
in Section 3.1, Q(B) can be reformulated as:

5.4 Q(B) = CBT, A

(5.4) (B) = max(CB", A),

where (U, V) = Tr(UTV) denotes a matrix inner product. C is constructed
in the similar way as in (3.2) or (3.3) just by replacing the index of the
input variables with the output variables, and A is the matrix of auxiliary
variables.
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TABLE 4
Comparison of Per-iteration Time Complexity for Multi-task Regression

Overlapping Group Lasso Graph-guided Fused Lasso
SPG O(JKmin(J,N)+J > glgl) O(JK min(J,N) + J|E|)
IPM|O (J2(K +G)A(KN +J(S,e0l9)| O (K +E])?)

Then we introduce the smooth approximation of (5.4):

(5.5) fu(B) = max ((CB", A) — pd(A)) .

where d(A) = 1||A||%. Following a proof strategy similar to that in Theorem
1, we can show that f,(B) is convex and smooth with gradient V f,(B) =
(A")TC, where A* is the optimal solution to (5.5). The closed-form solution
of A* and the Lipschitz constant for V f,(B) can be derived in the same
way.

By substituting (B) in (5.1) with f,(B), we can adopt Algorithm 1 to
solve (5.1) with convergence rate of O(1). The per-iteration time complexity
of SPG as compared to IPM for SOCP or QP formulation is presented int
Table 4. As we can see, the per-iteration complexity for SPG is linear in
max(|K|, 3 ,¢cg l9]) or max(| K|, |E|) while traditional approaches based on
IPM scape at least cubically to the size of outputs K.

6. Experiment. In this section, we evaluate the scalability and effi-
ciency of the smoothing proximal gradient method (SPG) on a number of
structured sparse regression problems via simulation, and apply SPG to an
overlapping group lasso problem on a real genetic datable.

On an overlapping group lasso problem, we compare the SPG with FO-
BOS (Duchi and Singer, 2009) and IPM for SOCP.? On a multi-task graph-
guided fused lasso problem, we compare the running time of SPG with that
of the FOBOS (Duchi and Singer, 2009) and IPM for QP.* Note that for
FOBOS, since the proximal operator associated with Q(3) cannot be solved
exactly, we set the “loss function” to I(3) = g(8) + Q(8) and the penalty to
Al|B]1. According to Duchi and Singer (2009), for the non-smooth loss I(3),
FOBOS achieves O (6%) convergence rate, which is slower than our method.

All experiments are performed on a standard PC with 4GB RAM and
the software is written in MATLAB. The main difficulty in comparisons is

We use the state-of-the-art MATLAB package SDPT3 (Tiitiincii et al., 2003) for
SOCP.

“We use the commercial package MOSEK (http://www.mosek.com/) for QP. Graph-
guided fused lasso can also be solved by SOCP but it is less efficient than QP.
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a fair stopping criterion. Unlike IPM, SPG and FOBOS do not generate a
dual solution, and therefore, it is not possible to compute a primal-dual gap,
which is the traditional stopping criterion for IPM. Here, we adopt a widely
used approach for comparing different methods in optimization literature.
Since it is well known that IPM usually gives more accurate (i.e., lower)
objective, we set the objective obtained from IPM as the optimal objective
value and stop the first-order methods when the objective is below 1.001
times the optimal objective. For large datasets for which IPM cannot be
applied, we stop the first-order methods when the relative change in the
objective is below 1075, In addition, maximum iterations is set to 20,000.

Since our main focus is on the optimization algorithm, for the purpose of
simplicity, we assume that each group in the overlapping group lasso problem
receives the same amount of regularization and hence set the weights wy
for all group to be 1. In principle, more sophisticated prior knowledge of
the importance for each group can be naturally incorporated into wy. In
addition, we notice that each variable j with the regularization A|f3;| in
Al|B]|1 can be viewed as a singleton group. To ease the tuning of parameters,
we again assume that each group (including the singleton group) receives
the same amount of regularization and hence constrain the regularization
parameters A = .

The smoothing parameter 1 is set to 55 according to Theorem 2, where D
is determined by the problem size. It is natural that for large-scale problems
with large D, a larger € can be adopted without affecting the recovery quality
significantly. Therefore, instead of setting €, we directly set @ = 104, which
provided us with reasonably good approximation accuracies for different
scales of problems based on our experience for a range of y in simulations. As
for FOBOS, we set the stepsize rate to % as suggested in Duchi and Singer

(2009), where ¢ is carefully tuned to be % for univariate regression and
0.1

NJK

for multi-task regression.

6.1. Simulation Study I: Overlapping Group Lasso. We simulate data for
a univariate linear regression model with the overlapping group structure
on the inputs as described below. Assuming that the inputs are ordered, we
define a sequence of groups of 100 adjacent inputs with an overlap of 10
variables between two successive groups so that

G ={{1,...,100},{91,...,190},...,{J — 99, ..., J}},

with J = 90|G| + 10. We set 3; = (—1)7 exp(—(j — 1)/100) for 1 < j < J.
We sample each element of X from i.i.d. Gaussian distribution, and generate
the output data from y = X3 + €, where € ~ N(0, Inxn).
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TABLE 5
Comparisons of different optimization methods on the overlapping group lasso

|G| =10 N=1,000 N=5,000 N=10,000
=910 S J- S J- S J-
J CPU Obj.|CPU Obj.|CPU Ob

SOCP 103.71] 266.683| 493.08| 917.132| 3777.46|1765.518
7 =2 |FOBOS 27.12| 266.948 1.71} 918.019 1.48|1765.613
SPG 0.87| 266.947 0.71] 917.463 1.28(1765.692
SOCP 106.02| 83.304| 510.56| 745.102| 3585.77|1596.418
v =0.5|FOBOS 32.44| 82.992 4.98| 745.788 4.65|1597.531
SPG 0.42| 83.386 0.41] 745.104 0.69]1596.452

G| =50 N=1,000 N=5,000 N=10,000
(J =4510) |CPU (s)|  Obj.|CPU (s)|  Obj.|CPU (s)|  Obj.
SOCP | 4144.20(1089.014 - - - -
v=10|FOBOS| 476.91|1191.047| 394.75|1533.314| 79.82|2263.494
SPG 56.35|1089.052|  77.61|1533.318|  78.90|2263.601
SOCP | 3746.43| 277.911 - - - -
v=25|FOBOS| 478.62| 286.327| 867.94| 559.251| 183.72|1266.728

SPG 33.09| 277.942|  30.13| 504.337|  26.74|1266.723

G| = 100 N=1,000 N=5,000 N=10,000
(J=9010) |CPU (s)|  Obj.|CPU (s)|  Obj.|CPU (s)|  Obj.
FOBOS| 1336.72|2090.808| 2261.36|3132.132| 1091.20|3278.204
v =20 |SPG 234.71|2090.792| 225.28|2692.981| 368.52|3278.219
FOBOS| 1689.69| 564.209| 2287.11|1302.552| 3342.61|1185.661
v7=5 |SPG 169.61| 541.611| 192.92| 736.559| 176.72|1114.933

To demonstrate the efficiency and scalability of SPG, we vary J, N and ~
and report the total CPU time in seconds and the objective value in Table 5.
The regularization parameter -y is set to either |G|/5 or |G|/20. As we can see
from Table 5, firstly, both SPG and FOBOS are more efficient and scalable by
orders of magnitude than IPM for SOCP. For larger J and N, we are unable
to collect the results for SOCP. Secondly, SPG is more efficient than FOBOS
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Fic 3. Regression coefficients estimated by different methods based on a single sim-
ulated datable. b = 0.8 and threshold p = 0.3 for the output correlation graph are
used. Red pizels indicate large values. (a) The correlation coefficient matriz of phe-
notypes, (b) the edges of the phenotype correlation graph obtained at threshold 0.3
are shown as black pizels, (¢) the true regression coefficients used in simulation.
Absolute values of the estimated regression coefficients are shown for (d) lasso, (e)
01/ regularized multi-task regression, (f) Graph-guided fused lasso. Rows corre-
spond to outputs and columns to inputs.

for almost all different scales of the problems.® Thirdly, for SPG, a smaller
leads to faster convergence. This result is consistent with Theorem 2, which
shows that the number of iterations is linear in 7 through the term ||C||.
Moreover, we notice that a larger N does not increase the computational
time for SPG. This is also consistent with the time complexity analysis,
which shows that for linear regression, the per-iteration time complexity is
independent of N.

However, we find that the solutions from IPM are more accurate and in
fact, it is hard for first-order approaches to achieve the same precision as
IPM. Assuming that we require € = 1076 for the accuracy of the solution, it
takes IPM about O(log(1)) ~ 14 iterations to converge while O(1) = 106 it-
erations for SPG. This is the drawback for any first-order method. However,
in many real applications, we do not require the objective to be extremely
accurate (e.g., ¢ = 1073 is sufficiently accurate in general) and first-order
methods are more suitable. More importantly, first-order methods can be
applied to large-scale high-dimensional problems while IPM can only be ap-
plied to small or moderate scale problems due to the expensive computation
necessary for solving the Newton linear system.

®In some entries in Table 5, the Obj. from FOBOS is much larger than other methods.
This is because that FOBOS has reached the maximum number of iterations before con-
vergence. Instead, for our simulations, SPG generally converges in hundreds or at most, a
few thousands, iterations and never pre-terminates.
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Fic 4. Comparisons of SPG, FOBOS and QP. (a) Vary K from 50 to 10,000, fizing
N = 500,J = 100; (b) Vary J from 50 to 10,000, fizing N = 1000, K = 50; and
(¢) Vary N from 500 to 10000, fizing J = 100, K = 50.

6.2. Simulation Study II: Multi-task Graph-guided Fused Lasso. We sim-
ulate data using the following scenario analogous to the problem of genetic
association mapping, where we are interested in identifying a small number
of genetic variations (inputs) that influence the phenotypes (outputs). We
use K =10, J = 30 and N = 100. To simulate the input data, we use the
genotypes of the 60 individuals from the parents of the HapMap CEU panel
(The International HapMap Consortium, 2005), and generate genotypes for
additional 40 individuals by randomly mating the original 60 individuals. We
generate the regression coeflicients 3;’s such that the outputs y’s are cor-
related with a block-like structure in the correlation matrix. We first choose
input-output pairs with non-zero regression coefficients as we describe be-
low. We assume three groups of correlated output variables of sizes 3, 3,
and 4. We randomly select inputs that are relevant jointly among the out-
puts within each group, and select additional inputs relevant across multiple
groups to model the situation of a higher-level correlation structure across
two subgraphs as in Figure 3(a). Given the sparsity pattern of B, we set all
non-zero (3;; to a constant b = 0.8 to construct the true coefficient matrix
B. Then, we simulate output data based on the linear regression model with
noise distributed as standard Gaussian, using the simulated genotypes as in-
puts. We threshold the output correlation matrix in Figure 3(a) at p = 0.3
to obtain the graph in Figure 3(b), and use this graph as prior structural
information for graph-guided fused lasso. As an illustrative example, the es-
timated regression coefficients from different regression models for recovering
the association patterns are shown in Figures 3(d)—(f). While the results of

lasso and ¢; /¢s-regularized multi-task regression with Q(B) = 23721 18;.Il2
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(Obozinski et al., 2009) in Figures 3 (d) and (e) contain many false positives,
the results from graph-guided fused lasso in Figure 3(f) show fewer false pos-
itives and reveal clear block structures. Thus, the graph-guided fused lasso
proves to be a superior regression model for recovering the true regression
pattern that involves structured sparsity in the input/output relationships.

To compare SPG with FOBOS and IPM for QP in solving such a struc-
tured sparse regression problem, we vary K, J, N, and present the computa-
tion time in seconds in Figures 4(a)-(c), respectively. We select the regular-
ization parameter v using a separate validation datable, and report the CPU
time for graph-guided fused lasso with the selected . The input/output data
and true regression coefficient matrix B are generated in the way similar as
above. More precisely, we assume that each group of correlated output vari-
ables is of size 10. For each group of the outputs, We randomly select 10%
of the input variables as relevant. In addition, we randomly select 5% of the
input variables as relevant to every two consecutive groups of outputs and
1% of the input variables as relevant to every three consecutive groups. We
set the p for each datable so that the number of edges is 5 times the number
of the nodes (i.e. |E| = 5K). Figure 4 shows that SPG is substantially more
efficient and can scale up to very high-dimensional and large-scale datasets.
Moreover, we notice that the increase of N almost does not affect the com-
putation time of SPG, which is consistent with the complexity analysis in
Section 3.5.

6.3. Real Data Analysis: Pathway Analysis of Breast Cancer Data. In
this section, we apply the SPG to an overlapping group lasso problem with
a logistic loss on a real-world datable collected from breast cancer tumors
(van de Vijver et al., 2002; Jacob et al., 2009).The main goal is to demon-
strate the importance of employing structured sparsity-inducing penalties
for performance enhancement in real life high-dimensional regression prob-
lems, thereby further exhibit and justify the needs of efficient solvers such
as SPG for such problems.

The data are given as gene expression measurements for 8,141 genes in
295 breast-cancer tumors (78 metastatic and 217 non-metastatic). A lot of
research efforts in biology have been devoted to identifying biological path-
ways that consist of a group of genes participating in a particular biological
process to perform a certain functionality in the cell. Thus, a powerful way
of discovering genes involved in a tumor growth is to consider groups of in-
teracting genes in each pathway rather than individual genes independently
(Ma and Kosorok, 2010). The overlapping-group-lasso penalty provides us
with a natural way to incorporate these known pathway information into
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Fic 5. Results from the analysis of breast cancer datable. (a) Balanced error rate for
varying the number of selected genes, and (b) the number of pathways for varying
the number of selected genes.

the biological analysis, where each group consists of the genes in each path-
way. This approach can allow us to find pathway-level gene groups of sig-
nificance that can distinguish the two tumor types. In our analysis of the
breast cancer data, we cluster the genes using the canonical pathways from
the Molecular Signatures Database (Subramanian et al., 2005), and con-
struct the overlapping-group-lasso penalty using the pathway-based clusters
as groups. Many of the groups overlap because genes can participate in
multiple pathways. Overall, we obtain 637 pathways over 3,510 genes, with
each pathway containing 23.47 genes on average and each gene appearing in
four pathways on average. Instead of analyzing all 8,141 genes, we focus on
these 3,510 genes which belong to certain pathways. We set up the optimiza-
tion problem of minimizing the logistic loss with the overlapping-group-lasso
penalty to classify the tumor types based on the gene expression levels, and
solve it with SPG.

Since the number of positive and negative samples are imbalanced, we
adopt the balanced error rate defined as the average error rate of the two
classes.® We split the data into the training and testing sets with the ratio of
2:1, and vary the A = « from large to small to obtain the full regularization
path.

In Figure 5, we compare the results from fitting the logistic regression
with the overlapping-group-lasso penalty with a baseline model with only
the ¢1-norm penalty. Figure 5(a) shows the balanced error rates for the
different numbers of selected genes along the regularization path. As we can
see, the balanced error rate for the model with the overlapping-group-lasso

fSee http://www.modelselect.inf .ethz.ch/evaluation.php for more details.
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penalty is lower than the one with the ¢1-norm, especially when the number
of selected genes is between 500 to 1000. The model with the overlapping-
group-lasso penalty achieves the best error rate of 29.23% when 696 genes are
selected, and these 696 genes belong to 125 different pathways. In Figure
5(b), for the different numbers of selected genes, we show the number of
pathways to which the selected genes belong. From Figure 5(b), we see
that when the group structure information is incorporated, fewer pathways
are selected. This indicates that regression with the overlapping-group-lasso
penalty selects the genes at the pathway level as a functionally coherent
groups, leading to an easy interpretation for functional analysis. On the
other hand, the genes selected via the ¢1-norm penalty are scattered across
many pathways as genes are considered independently for selection. The
total computational time for computing the whole regularization path with
20 different values for the regularization parameters is 331 seconds for the
overlapping group lasso.

We perform functional enrichment analysis on the selected pathways, us-
ing the functional annotation tool (Huang et al., 2009), and verify that the
selected pathways are significant in their relevance to the breast-cancer tu-
mor types. For example, in a highly sparse model obtained with the group-
lasso penalty at the very left end of Figure 5(b), the selected gene markers
belong to only seven pathways, and many of these pathways appear to be rea-
sonable candidates for an involvement in breast cancer. For instance, all pro-
teins in one of the selected pathways are involved in the activity of proteases
whose function is to degrade unnecessary or damaged proteins through a
chemical reaction that breaks peptide bonds. One of the most important
malignant properties of cancer involves the uncontrolled growth of a group
of cells, and protease inhibitors, which degrade misfolded proteins, have been
extensively studied in the treatment of cancer. Another interesting pathway
selected by overlapping group lasso is known for its involvement in nicotinate
and nicotinamide metabolism. This pathway has been confirmed as a marker
for breast cancer in previous studies (Ma and Kosorok, 2010). In particu-
lar, the gene ENPP1 (ectonucleotide pyrophosphatase/phosphodiesterase
1) in this pathway has been found to be overly expressed in breast tumors
(Abate et al., 2005). Other selected pathways include the one related to ri-
bosomes and another related to DNA polymerase, which are critical in the
process of generating proteins from DNA and relevant to the property of
uncontrolled growth in cancer cells.

We also examine the number of selected pathways that gives the lowest
error rate in Figure 5. At the error rate of 29.23%, 125 pathways (696 genes)
are selected. It is interesting to notice that among these 125 pathways, one
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is closely related to apoptosis, which is the process of programmed cell death
that occurs in multicellular organisms and is widely known to be involved in
un-controlled tumor growth in cancer. Another pathway involves the genes
BRCA1, BRCA2, and ATR, which have all been associated with cancer
susceptibility.

For comparison, we examine the genes selected with the ¢1-norm penalty
that does not consider the pathway information. In this case, we do not find
any meaningful functional enrichment signals that are relevant to breast
cancer. For example, among the 582 pathways that involve 687 genes at
37.55% error rate, we find two large pathways with functional enrichments,
namely response to organic substance (83 genes with p-value 3.3E-13) and
the process of oxidation reduction (73 genes with p-value 1.7E-11). However,
both are quite large groups and matched to relatively high-level biological
processes that do not provide much insight on cancer-specific pathways.

7. Conclusions and Future Work. In this paper, we investigated
an optimization problem for estimating the structured-sparsity pattern in
regression coefficients under a general class of structured sparsity-inducing
penalties. Many of the structured sparsity-inducing penalties including the
overlapping-group-lasso penalties and graph-guided-fused-lasso penalty share
a common set of difficulties in optimization such as non-separability and non-
smoothness. We showed that the optimization problems with these penalties
can be transformed into a common form, and proposed a general optimiza-
tion approach called smoothing proximal gradient method for efficiently solv-
ing the optimization problem of this common form. Our results show that
the proposed method enjoys both desirable theoretical guarantee and prac-
tical scalability under various difficult settings involving complex structure
constraints, multi-task, and high-dimensionality.

There are several future directions for this work. Firstly, it is known that
reducing p over iterations leads to better empirical results. However, in such
a scenario, the convergence rate is harder to analyze. Moreover, since the
method is only based on gradient, its online version with the stochastic
gradient descent can be easily derived. However, proving the regret bound
will require a more careful investigation.

Another interesting direction is to incorporate other accelerating tech-
niques into our method to further boost the performance. For example, the
technique introduced in Zhou et al. (2011) can efficiently accelerate the al-
gorithms which essentially solve a fixed point problem as 8 = F(3). It uses
an approximation of the Jacobian of F'(3). It is very interesting to incorpo-
rate this technique into our framework. However, since there is an £;-norm
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penalty in our model and the operator F' is hence non-differentiable, it is
difficult to compute the approximation of the Jacobian of F'. One potential
strategy is to use the idea from semi-smooth Newton method (Qi and Sun,
1993; Sun et al., 2002) to solve the non-smooth operator F.

8. Appendix.

8.1. Proof of Theorem 1. We first introduce the concept of Fenchel Con-
Jjugate.

DEFINITION 1. The Fenchel conjugate of a function o(cx) is the function
©*(B) defined as:
B = swp (a"B-p(@).

acdom(p)

Recall that d(a) = %Hoz”2 with the dom(a) = Q. According to Definition
1, the conjugate of d(-) at % is: d* (%) = SUPgeo (aT% - d(a)) , and
hence

fu(B) = argmax (aTC,B - ,ud(a)) = pud* () .
acQ H
According to Theorem 26.3 in Rockafellar (1996) “a closed proper convex
function is essentially strictly convex if and only if its conjugate is essentially
smooth”, since d(a) is a closely proper strictly convex function, its conjugate
is smooth. Therefore, f,,(3) is a smooth function.

Now we apply Danskin’s Theorem (Prop B.25 in Bertsekas (1999)) to
derive V f,,(8). Let ¢(a, ) = a’ CB—pd(cv). Since d(+) is a strongly convex
function, arg max,co ¢(c, 3) has a unique optimal solution and we denote
it as a*. According to Danskin’s Theorem:

(8.1) Vu(B) = Vad(a®,B) = CTa.

As for the proof of Lipschitz constant of f,(83), readers may refer to
Nesterov (2005).

8.2. Proof of Proposition 1.

(8.2) o* = argmax <aT0B - MllaH%)
acQ 2
i
= argmaxz ('ngagﬂg - 2”“9”%)
acQ geg
. YwgBy
= argmlnz lag — ——=||3

acQ geg 1%
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Therefore, (8.2) can be decomposed into |G| independent problems: each one
is the Euclidean projection onto the fo-ball:
rngﬁg

a; = argmin |jog —

g
ag:flagll2<1

13,

T
Zl)T, cel (a;‘gl)T} . According to the property of £s-ball, it

can be easily shown that:

and a* = [(a

* 7wgﬂg
¥ = S(T),
Al > 1,
where S(u) — | Tl 1ul2
u [ull2 < 1.
As for [|C],
J

IOVl =~ D D (w2 =X 1> (D (wy)?)?,
geg j€g j=1 g€g s.t. jeg

the maximum value of ||Cv||2, given ||v|2 < 1, can be achieved by setting
v> for j corresponding to the largest summation } g 44 ng(wg)2 to one,
and setting other v;’s to zeros. Hence, we have

Cvlz = a 2,
1OVl ’yje?ll,..}.{,J}\/deg ot ieg (W)

8.3. Proof of Proposition 2. Similar to the proof technique of Proposition
1, we reformulate the problem of solving a* as a Euclidean projection:

cp

o’ = arg max <aTC,B - ”||a||§) = argmin |a — ——||3,
acQ 2 afladdloe<1 Iz

and the optimal solution a* can be obtained by projecting % onto the
{~o-ball.

According to the construction of matrix C, we have for any vector v:

(8.3) ICvIz=~" > (7(rm))*(vm — sign(rm)uv)?
e=(m,l)eE

By the simple fact that (a £ b)? < 2a? + 2b% and the inequality holds
as equality if and only if @ = +b, for each edge e = (m,l) € E, the value
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(U, — sign(ry,)v;)? is upper bounded by 2v2, 4 2v7. Hence, when ||v||2 = 1,
the right-hand side of (8.3) can be further bounded by:
ICVIE <9 Eemm e 2(7(rm))(v7, + v7)

= 72 ZjEV(Ze incident on k 2(7’(7’6))2)’[)]2

=2 >jev devjz-

< 29% maxjey dj,

(8.4)

where

dj = > (7(re))*.

e€FE s.t. e incident on j

Therefore, we have

Cll = max ||C < /242 maxd;.
€1l = max, llOv]2 < 207 maxd,

Note that this upper bound is tight because the first inequality in (8.4)
is tight.

8.4. Proof of Theorem 2. Based on the result from Beck and Teboulle
(2009), we have the following lemma:

LEMMA 1. For the function f(B) = h(B8) + \||B||1, where h(B) is an
arbitrary convex smooth function and its gradient Vh(B) is Lipschitz con-
tinuous with the Lipschitz constant L. We apply Algorithm 1 to minimize
f(ﬁ) and let B¢ be the approxzimate solution at the t-th iteration. For any 3,
we have the following bound:

~ ~ _ 302
(55 78 - gy < 28T

In order to use the bound in (8.5), we use the similar proof scheme as in
Lan et al. (2011) and decompose f(B") — f(B8*) into three terms:
(8.6)

189 = 187 = (18" - F(8Y) + (F(8Y) — 1(87) + (F(8) - £(87)).

According to the definition of f , we know that for any 3

f(B) < f(B) < f(B)+uD,

where D = maxqeg d(a). Therefore, the first term in (8.6), f(3%) — f(8%),
is upper-bounded by pD, and the last term in (8.6) is less than or equal to
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0 (i.e., f(B") — f(B") <0). Combining (8.5) with these two simple bounds,
we have:

(8.7)

F(8)-1(8") < pp4 2ENE” ~ B>

0/12

2(18* - 8°|3 (
t2

2
Amax (XTX) + HCJ) )

By setting ;1 = 5% and plugging this into the right-hand side of (8.7), we
obtain

* 12 2
w8 7B - sen < v A0 (xmax (x"X) + 2DHECH) |

If we require the right-hand side of (8.8) to be equal to € and solve it for ¢,
we obtain the bound of ¢ in (3.16).
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