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Abstract

In this paper we describe a general probabilistic framework for modeling waveforms such as
heartbeats from ECG data. The model is based on segmental hidden Markov models (as
used in speech recognition) with the addition of random effects to the generative model. The
random effects component of the model handles shape variability across different waveforms
within a general class of waveforms of similar shape. We show that this probabilistic model
provides a unified framework for learning these models from sets of waveform data as well
as parsing, classification, and prediction of new waveforms. We derive a computationally
efficient EM algorithm to fit the model on multiple waveforms, and introduce a scoring
method that evaluates a test waveform based on its shape. Results on two real-world datasets
demonstrate that the random effects methodology leads to improved accuracy (compared to
alternative approaches) on classification and segmentation of real-world waveforms.



1 Introduction

Automatically parsing and recognizing waveforms based on their shape is a classic problem
in pattern recognition (Fu, 1982). Applications include automated classification of heartbeat
waveforms in ECG data analysis (Koski, 1986), interpretation of waveforms from turbulent
flow experiments (Bruun, 1995), and discrimination of nuclear events and earthquakes in seis-
mograph data (Bennett & Murphy, 1986; Barker et al., 1998). Typically in these applications
it is impractical for a human to continuously monitor the time-series data in real-time (or to
scan large archives of such data) and there is a need for accurate and automated real-time
waveform detection. Other applications of waveform modeling occur in database systems
and information retrieval, for systems that can take a waveform as an “input query” and
search a large database to find similar waveforms that match this query (e.g., Yi & Faloutsos,
2000).

While the human visual system can easily recognize the characteristic signature of a particu-
lar waveform shape (a heartbeat waveform for example) the problem can be quite difficult for
automated methods. For example, as Figure 1(a) shows, there can be significant variability
in shape among waveforms belonging to the same general class. The sources of variability
include shifts of the locations of prominent features such as peaks, valleys, and plateaus,
scaling along the time and amplitude axes, and measurement noise.

A generally useful approach to these problems is to construct a generative model for the
waveform and then use this model to detect and parse new waveforms. For example, syn-
tactic grammars decompose the waveform into a set of component parts generated by a set
of grammatical rules. To model shape variability these grammars require the addition of
a stochastic component, and to learn such models from data requires a likelihood function
expressing the probability of an observed set of waveforms given a model and its parameters.
In this general context relatively simple statistical grammars such as hidden Markov models
(HMMs) have been pursued (e.g., Koski, 1996; Hughes et al., 2003), given that stochastic
grammars with richer representations are generally much more difficult to learn. The param-
eters of these models can be learned from a set of examplar waveforms—new waveforms can
then be parsed and classified based on the likelihood of the new waveform given the trained
model.

In the standard finite-state discrete-time hidden Markov model there are two sets of variables
of interest: (1) a discrete-time finite-state Markov process which is unobserved, and (2) a set
of observed measurements at time ¢ which only depend (stochastically) on the state value
at time t. The transition probabilities in the Markov chain and the state-output conditional
probability densities are typically assumed to be stationary in time. From a shape-modeling
viewpoint this model generates noisy versions of piece-wise constant “shapes” over time,
since the observations within a sequence of states of the same value will have constant mean.

A potentially useful extension of standard HMMs for shape modeling is the so-called seg-
mental hidden Markov model, originally introduced in the speech recognition community



(Levinson, 1986; Ostendorf et al., 1996) and proposed for more general waveform modeling
in Ge & Smyth (2000). The segmental model allows for the observed data within each seg-
ment (a sequence of states with the same value) to follow a general parametric regression
form, such as a linear function of time with additive noise. This allows us to model the
shape of the waveform directly, in this case as a sequence of piecewise linear components, as
shown in Figure 1(c).

A limitation of the standard segmental model is that it assumes that the parameters of
the model are fixed. Thus, the only source of variability in an observed waveform arises
from variation in the lengths of the segments and observation noise added to the functional
form in each segment. The limitation of this can clearly be seen in Figure 1(d), where a
segmental model has been trained on the data in Figure 1(a) and then used to parse the
specific waveform in Figure 1(b) (“parsing” means inferring the most likely state sequence
given the model). We can see that the slopes and intercepts provided by the model do not
match the observed data particularly well in each segment, e.g., in the first segment the
intercept is clearly too low on the y-axis, in the second segment the slope is too small, and so
forth. By using the same fixed parameters for all waveforms, the model cannot fully account
for variability in waveform shapes.

To overcome this limitation, in this paper we combine segmental HMMs with random effects
models (Laird & Ware, 1982). The general idea of modeling with random effects is to allow
parameters to have individual-level (or waveform-level) random variation, while still being
coupled together by an overall “population prior.” By extending the segmental HMM to
include random effects, we can allow the slopes and intercepts of each waveform to vary
according to a prior distribution, within each segment. The parameters of this prior can
be learned from data in the form of sets of waveforms in an unsupervised manner. In fact
the resulting model can be viewed as a directed graphical model, allowing for application of
standard methods for inference and learning. For example, we can in principle learn that
the slopes across multiple waveforms for the first segment in Figure 1(c) tend to have a
characteristic mean slope and standard deviation. The random effects approach provides
a systematic mechanism for allowing variation in “shape space” in a manner that can be
parametrized.

The primary contributions of this paper are to (a) propose the use of random effects segmental
HMMs for general waveform modeling applications, (b) derive a computationally efficient
EM procedure for learning such models (reducing complexity by a factor of T2 where T is
the length of a waveform), (c) propose two separate likelihood-based scores for shape and
for noise (which are then shown to improve recognition accuracy over using just likelihood
alone), and finally (d) illustrate on two real waveform data sets how these models can be
used for waveform parsing, classification, and prediction. The closest related work is Holmes
& Russell (1999) who explored a similar idea for using a distribution over parameters in
segmental HMMSs, in the context of speech recognition. Our work extends these ideas by
deriving a provably correct EM algorithm, showing how the computational complexity of
this EM algorithm can be significantly reduced, and generalizing the applicability of the
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Figure 1: Bubble-probe interaction data: (a) a set of waveforms obtained from bubbles that
are split by a probe during interaction, (b) an example of single waveform, (c) piecewise
linear approximation of (b), and (d) segmental HMMs fit to a test waveform.



method.

We begin our discussion by introducing segmental HMMs in Section 2. In Section 3, we
extend this model to incorporate random effects models, and describe the EM algorithm for
parameter estimation as well as the inference algorithms and the scoring methods for test
waveforms. In Section 4, we evaluate our model on two applications involving bubble-probe
interaction data and ECG data and conclude the paper in Section 5.

2 Segmental HMMs

Standard discrete-time finite-state HMMs impose a geometric distribution on run lengths (or
segment lengths) for each state value and assume that observations are conditionally inde-
pendent with a constant mean within such segments. Segmental HMMs relax these modeling
constraints by allowing (a) arbitrary distributions on run lengths and (b) “segment models”
(regression models) that allow the mean to be a function of time within each segment.

A segmental HMM with M states is described by an M x M transition matrix, plus a
duration distribution and segment distribution for each state k, where k = 1,..., M. The
transition matrix A (which is stationary in time) has entries ay;, namely, the probability of
being in state k at time ¢ + 1 given state [ at time ¢. The initial state distribution can be
included in A as transitions from state 0 to each state k. In waveform modeling, we typically
constrain the transition matrix to allow only left-to-right transitions and no self-transitions.
Thus, there is an ordering on states, each state can be visited at most once, and states can
be skipped.

In this paper, we model the duration distribution of state k, using a Poisson distribution,

€_>\’C )\kdil

P(d|0,,) = e

d=1,2,...

(shifted to start at d = 1 to prevent a silent state). Other choices for the duration distribution
could also be used. Once the process enters state k, a duration d is drawn, and state k
produces a segment of observations of length d from the segment distribution. In what
follows we assume that the shape of waveforms can be approximated as a sequence of linear
segments, and model the rth segment of observations of length d, y,., generated by state k,
as a linear regression function in time,

Yr = X’I”/Bk: + e, €, ~ Nd(07 J2Id)7 (1>

where 3, is a 2 x 1 vector of regression coefficients, e, is a d x 1 vector of Gaussian noise
with variance o2 in each component, and X, is a d x 2 design matrix consisting of a column
of 1’s (for the intercept term) and a column of = values representing the time values. Note
that this model can easily be generalized to allow nonlinear polynomial functions of x that



are still linear in the parameters 3,. For simplicity, o2 is assumed to be common across all
states; again this can be relaxed.

Treating the unobserved state sequences as missing, we can estimate the parameters, 8 =
{A,0,={ Nk =1,...,M},0; ={B,,(c*)|k =1,..., M}}, using the EM algorithm with
the forward-backward (F-B) algorithm as a subroutine for inference in the E step (Deng et
al., 1994). The F-B algorithm for segmental HMMs, modified from that of standard HMMs
to take into account the duration distribution, recursively computes

ay(k) = P(y1.4,stay in state k ends at t|@)
a; (k) = P(y14,stay in state k starts at t + 1|0) (2)

in the forward pass, and

Bi(k) = P(y;1.7|stay in state k ends at ¢, 0)
B (k) = P(ysy1.7|stay in state k starts at ¢ + 1,6) (3)

in the backward pass, and returns the results to the M step as sufficient statistics (Rabiner
& Juang, 1993).

Inference algorithms for segmental HMMs provide a natural way to evaluate the performance
of the model on test data. The F-B algorithm scores a previously unseen waveform y by
calculating the likelihood

p(y10) =) p(y.sl0) = ar(k). (4)

In addition, the Viterbi algorithm can be used to provide a segmentation of a waveform
by computing the most likely state sequence. The addition of duration distributions in
segmental HMMs increases the time complexity of both the F-B and Viterbi algorithms
from O(M?T) for standard HMMs to O(M?*T?), where T is the length of the waveform (i.e.
the number of observations).

3 Segmental HMMs with Random Effects

A random effects model is a general statistical framework when the data generation process
can be seen as having hierarchical structure (Searle et al., 1992). At each level of the gen-
erative process, the model defines a prior distribution over the individual group parameters,
called random effects, of one level below. The observed data are generated at the bottom
of the hierarchy, given parameters drawn from the prior distribution one level above in the
hierarchy. Typically, the random effects are not observable, so the EM algorithm is a pop-
ular approach to learning model parameters from the observed data (Dempster et al., 1981;
Laird & Ware, 1982). By combining segmental HMMs and random effects models we can
take advantage of the strength of each in waveform modeling.
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3.1 The Model

Beginning with the segmental HMMs described in Section 2, we can extend the segment
distributions of the model as follows. Consider the rth segment y’ of length d from the
1th individual waveform generated by state k. Following the discussion in Laird & Ware
(1982), we describe the generative model as a two-stage process. At stage one, we model the
observed data y’ as

V, =X B+ Xou +ep e~ Ny(0,071y), (5)

where €’ is the measurement noise, X' is a d x 2 design matrix for the time measurements
corresponding to y’, (B, + ul) are the regression coefficients, and 1 < i < N (for N
waveforms). 3, represents the mean regression parameters for segment &, and u}'c represents
the variation in regression (or shape) parameters for the ith individual waveform. At this
stage, the individual random effects ul, as well as 3, and o? are viewed as parameters. At
the second stage, u} is viewed as a random variable with distribution

uz ~ N2(0a \Ilk)v (6)

where Wy, is a 2 X 2 covariance matrix, and u}, is independent of €. In this setup, it can be
shown that y’ and u}, have the following joint distribution:

Vi) o N X8y XWX, + 0%l X0y, (7)
u, dr2 0o /) U, X U, '

Also, from Equation (7), the posterior distribution of u}, can be written as

w,|yy, By, Wi, 0 ~ N (B;w ‘I’ﬁk) ; (8)
where
Bl = (XX +02(T,) )X (vl — X18,), 9)
and
W =X (W) (10)

Figure 2(a) is a plate-like diagram that illustrates how the segment model described above
generates a single waveform segment y’ when the duration d of the state is given. As we
enter state s¢ (that then repeats itself for d time steps), the model generates the individual
random effects parameter vector u’ from Equation (6), and, then, generates the observed
data y: = {yi,...,y5} from Equation (5). u’ belongs to the individual waveform i, whereas
P, 3, and o? are global parameters.
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3.2 Inference

To handle the random effects component in the F-B and Viterbi algorithms for segmental
HMMs, we notice from Equation (7) that the marginal distribution of a segment y'. generated
by state k is Ng(X%LB,, X0 X: + ¢21,), and that this corresponds to Equation (1) with
the covariance matrix oI, replaced by (X2®, X% + 0%I;). Replacing the two-level segment
distribution with this marginal distribution, and collapsing the hierarchy into a single level,
as shown in Figure 2(b), we can use the same F-B and Viterbi algorithm as in segmental
HMMSs in the marginalized space over the random effects.

The F-B algorithm recursively computes the quantities in Equations (2) and (3). These are
then used in the M step of the EM algorithm. The likelihood of a waveform y, given fixed
parameters 8 = {A,0,,0; = {8, ¥y, (0?)|k = 1,..., M}}, but with states s and random
effects u unknown, is evaluated as

pyle) = 3 / ply. s, ul8)du (11)
= S nlysl0) = 3 an(h).

As in segmental HMMs, the Viterbi algorithm can be used as a method to segment a wave-
form by computing the most likely state sequence.

What appears to make the inference in random effects segmental HMMs computationally
much more expensive than in segmental HMMs is the inversion of the d x d covariance
matrix, an\IlkX’;/ + 021, of the marginal segment distribution during the evaluation of the
likelihood of a segment. For example, in the F-B algorithm, the likelihood of a segment y’
of length d given state k, p(y'|B, ¥x, c?), needs to be calculated for all possible durations
d in each of the oy (k) and (;(k) expressions at each recursion. The naive computation of a
segment likelihood using direct inversion of the d x d covariance matrix would require O(T3)
computations, where T is the upper bound for d, leading to an overall time complexity of
O(M*T%). This can be computationally impractical when we have long waveforms with a
large value of T, (for example, T' = 256 for one of the data sets discussed in Section 4).

In the discussion of computational issues for random effects models, Dempster et al. (1981)
suggest an expression for the likelihood that is simple to evaluate. Applying their method
to the segment distribution of our model, we rewrite, using Bayes’ rule, the likelihood of a
segment y’ generated by state k as

p(YL u;c|/8k’ lI’ku 02)

p(yLlBe, i) = = —— :
( ’ g k) p(ukIY;"v/BmlI’kao-z)

where the numerator and the denominator of the right-hand side are given as Equations (7)
and (8), respectively. The right-hand side of the above equation holds for all values of ul.

By setting u}, to B; as given in Equation (9), we can simplify the expression for the segment
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likelihood to a form that involves only O(d) computations for each step that previously
involved O(d?) computations in the case of the naive approach with matrix inversions. Thus,
the time complexity of the F-B and Viterbi algorithms is reduced to O(M?T?). As shown in
Mitchell et al. (1995) for segmental HMMs we can reduce this computational complexity to
O(M?T?) by precomputing the segment likelihood and storing the values in a table—however
this precomputation is not possible with random effects models, leading to the additional
factor of T" in the complexity term.

3.3 Parameter Estimation

In this section, we describe how to obtain maximum likelihood estimates of the parameters
from a training set of multiple waveforms for a random effects segmental HMM using the
EM algorithm. We can augment the observed waveform data with both (a) state sequences
and (b) random effects parameters (both are considered to be hidden). The log likelihood of
the complete data of N waveforms, Dompree = (Y, S, U) = {(y*,s',ul),..., (y",sV,u™)},
where the state sequence s’ implies Rg: segments in waveform 4, is:

N
108 L(O| Deompiere) = 3 log ply',s', w'[A. 8,,6,)

i=1

N Ry
= Y log P(si|si_,, A) (12)

i=1 r=1

N Ry
+3°5 T log P(di184, .k = s,) (13)

i=1 r=1

N Rg
+Y ) logp(y;luy, By, 0% k = s,) (14)

i=1 r=1

N Ry
+3 ) log p(uy| Wy, k= s,). (15)

i=1 r=1

As we can see from the above equation, given the complete data, the log likelihood decouples
into four parts, where the transition matrix, the duration distribution parameters, the bottom
level parameters 3,02, and the top level parameters u} of random effects models appear
in each of the four terms. If we had complete data, we could optimize the four sets of
parameters independently. When only parts of the data are observed, by iterating between
the E step and the M step in the EM algorithm as described in the following section, we can
find a solution that locally maximizes the likelihood of the observed data.



3.3.1 E Step

In the E step, we find the expected log likelihood of the complete data,
Q(a(t)7 0) = E[log L(H‘Dcomplete”a (16>
with respect to

p(S,U|Y,0") = p(US,Y,0")P(S[Y,0")

N R
= TI1Ip(ilsi = k. yi, 69)P(si = kly;, 07), (17)

i=1r=1
where 8% is the estimate of the parameter vector from the previous M step of the tth EM
iteration. P(s’. = kly’,08") in Equation (17) can be obtained from the F-B algorithm.
The sufficient statistics, E [uﬂsi =kY, O(t)] and E [ufﬁu}ﬂsfﬂ =k Y, 09|, for P(ui|si =
k,yi,0Y) in Equation (17) can be directly obtained from Equations (9) and (10). The
computational complexity for an E step is O(M?T3N) where N is the number of waveforms.

3.3.2 M Step

In the M step, we find the values of the parameters that maximize Equation (16). As we can
see from Equations (12)-(15) and Equation (16), the optimization problem decouples into
four parts each of which involves a distinct set of parameters. The reestimation formula for
the transition probabilities and the duration distribution parameters can be shown to be:
N i t) 9i*
>ict 10<z))' > at(k)al(d)/@t (0)

(t+1) _ P(y'|

Qg , Py
SN L S S ad(k)ay) B (1)
P(yi|0)

S = 3 3 Citea - (d— 1)

N _ T P8

F No_ 1 C ’
2uimt gy 2ot 2 Ckd

where
Cina = o (K)P(d|0)p(yis14+al01)) Bra(k).

Using the notation of X}, = X}_,.,, and y};, = y}_,.1,, we update the covariance matrix of
the top level of the segment distribution model according to

0]
]

ZN Dt d<t CiktdE[uZ“Z,W’e

gty _ Py16")
k ZN >t 2d<t Cikta
= P10
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and for the bottom level, we reestimate the parameters using

o -1 o _ _
/B(tH) = (ZN 2t Lace Cikea(Xiy Xid)) . (EN 2t 2 Cinra(Xiy (yid—xidE[%Yﬂ(t)}))
k i=1 P(yi‘g(w) i=1 P(yi|0(t))

. . (z)
S S S Y aes Cira EIDE D Y,07]
ZN M S S aes Cikrad
= pyi")

(0_2)(t+1)

where

E[D:Di|Y,0"]
= (Vi100a — XiaB — X{,E[u}[Y,00])
(Yia — XiaB — X1,Eu;] Y, 0))
(X, X Var(uh[Y, 00)].

The computational complexity for each M step is O(MT3N). In practice, the algorithm
can converge relatively slowly, compared to segmental HMMSs, due to the large amount of
missing information typically present.

3.4 Model Evaluation and Score Functions

An obvious choice for evaluating a new test waveform based on a probabilistic model is to
compute the likelihood of the waveform given the parameters, as shown in Equation (11).
A different method that we propose in this section uses the fact that waveforms are scored
based on two different aspects of how the model fits the test waveform.

Each level of the random effects model models a different source of variability. At stage
two, the covariance matrix ¥y, in Equation (6) explains the amount of noise in shape space.
Unlike segmental HMMs, where the variance o2 in Equation (4) is forced to explain both
shape deformations and measurement noise, random effects models allow for modelling them
separately with a hierarchical structure. However, the likelihood in effect mixes both “lack of
fit” terms into a single score. Consequently, smooth waveforms that are well approximated
by linear segments with little measurement noise but with a considerable error in shape
(as shown in Figure 3(a)) can receive the same likelihood score as waveforms with high
measurement noise and little shape deformation from the mean shape (as shown in Figure

3(b)).
From the decomposition of the complete data likelihood in Equations (12)-(15), we notice

that Equation (15) is a contribution from stage two of the random effects component, and
that Equation (14) is a contribution from stage one. Equations (12) and (13) can be viewed

11
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Figure 3: Scores for test waveforms from the random effects segmental HMM trained using
the data shown in Figure 1(a).

as representing the shape deformation explained by the segmental HMM part of the model.
The score decomposition is,

Rs
SCOr€shape = E[(Z log P(s;|sr—1,A))

r=1

Rs
+() _log P(d, |04,k = s.))

r=1

Rs
+()_log p(uy| @y, k = 5,))ly. 0],

r=1

Ry
Scorencise = B> log p(y,[ug, By, 0%,k = s,)|y, 6],

r=1

where the expectation is taken with respect to the posterior distribution of the unobserved
data, p(s,uly,8) (Equation (17)). Figure 3 shows examples of waveforms with these two
scores. The results from our experiment in Section 4 demonstrate that using this score
decomposition (i.e., using both scores as features instead of a single likelihood score) improves
the recognition accuracy (in experiments where we want to classify new waveforms based on
whether they are similar to those in the training data or not).
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Table 1: Performance on Bubble-probe Interaction Data

LogP | One Step Ahead Prediction | Segmentation

Scores | LogP | Mean Squared Error Error
Segmental HMMs -75.92 | -0.2824 0.1035 0.0231
Random Effects Segmental HMMs | 248.68 | 0.9863 0.0247 0.0050

4 Experiments

We apply our model to two real world data sets, hot-film anemometry data in turbulent
bubbly flow and ECG heartbeat data. To investigate how much gain in performance we can
achieve by adding random effects models to segmental HMMs, in all of our experiments, we
compare the results from our new model with those from segmental HMMs. We use several
methods to evaluate the models:

LogP Score We compute log p(y|@) scores (Equations (4) and (11) for each model) for
test waveforms y to see how well the parameters @ learned from the training data can
model test waveforms.

Segmentation Quality To evaluate how well the model can segment test waveforms, we
first obtain the segmentations of test waveforms with the Viterbi algorithm, estimate
the regression coefficients B of each segment, and calculate the mean squared difference
between the observed data and XB (good segmentations produce low scores).

One-Step-Ahead Prediction To evaluate predictive power of the models, we use one-
step-ahead prediction on test waveforms. Given all of the observations up to time step
(t—1) for a test waveform y, we compute the logP scores of the observed value at time
t, and the mean squared error of the predicted values for the next time step.

In all of these experiments, we use five-fold cross validation. To evaluate the performance of
our model for classification, we include in the test set negative examples of the shape that
we are modeling, and build a k-nearest neighbor classifier with varying values for k using
the scores from the model as a feature vector for each waveform. For the model from each
of the five-fold cross validation, using the positive examples in the test set for that model
and the negative examples, we use a three-fold cross validation to obtain the classification
accuracy of the classifier.

13
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Table 2: Performance on ECG Data - Normal Heartbeats

LogP | One Step Ahead Prediction | Segmentation

Scores | LogP | Mean Squared Error Error
Segmental HMMs 64.59 | 0.2073 0.0630 0.00620
Random Effects Segmental HMMs | 394.71 | 1.9393 0.0068 0.00052

Table 3: Performance on ECG Data - Premature Ventricular Contractions

LogP One-Step-Ahead Prediction | Segmentation

Scores | LogP | Mean Squared Error Error
Segmental HMMs 28.82 | -0.1738 0.0550 0.0075
Random Effects Segmental HMMs | 323.79 | 1.5179 0.0141 0.0014
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4.1 Hot-film Anemometry in Turbulent Bubbly Flow

Hot-film anemometry is a technique commonly used in turbulent bubbly flow measurements
in fluid physics. Interactions such as splitting, bouncing, and penetrating between the bub-
bles and the probe in turbulent gas flow lead to characteristic interaction waveform shapes.
Physicists are interested in detecting the occurrence and type of interactions automatically
from such waveforms (Bruun, 1995). The difficulty of this problem arises from the large
variability in the shape of the waveforms caused by various factors such as velocity fluc-
tuations and different gas fractions during the measurement. Labels are provided for the
type or class of each interaction based on high speed image recordings of the event obtained
simultaneously with the interaction signal. In the results of this paper, we model waveforms
for one specific type of interaction where the probe splits the bubble. Our data consist of 50
waveforms such as those shown in Figures 1(a) and (b). We randomly sampled 20 waveforms
from this data set to form a training set for each of five-fold cross validation runs. Given that
Figure 1(c) is a reasonable piecewise linear approximation of the general shape, we chose
M = 6 as the number of states for both segmental HMMs and random effects segmental
HMMs.

Figure 4(a) illustrates visually that the quality of the segmentations of the waveforms using
the Viterbi algorithm is much better with random effects than without. Table 1 shows
a reduction of approximately 80% in squared error from using random effects for these
segmentations. Table 1 also shows a significant increase in logP scores for the test waveforms
in the models with random effects parameters as well as significantly better one-step-ahead
predictions.

To evaluate the performance of the models for classification, we used 72 additional waveforms
of negative examples labeled as bouncing, penetrating, and glancing interaction types, and
plot the classification accuracy in Figure 5. In addition to the two probabilistic models, we
include the results of using the direct mean squared distance between two waveforms as a
distance measure in k-nearest neighbor algorithms (this can be viewed as a baseline method).
We can see that using the two decomposed scores improves the accuracy of k-nearest neighbor
classifiers significantly over just using the likelihood.

4.2 ECG Data

The shape of heartbeat cycles in ECG data can be used to diagnose the heart condition of
a patient (Koski, 1996; Hughes, 2003). For example, Figure 4(b) shows the typical shape of
normal heartbeats, whereas Figure 4(c) is taken from a heart experiencing a premature ven-
tricular contraction. However, even among heartbeat recordings for the same heart condition
from the same individual, there is a significant variability in terms of shape and length. We
chose one ECG recording from the MIT-BIH Arrhythmia database, and manually divided
it into individual waveforms to obtain 28 normal heartbeats, and 28 abnormal heartbeats of
a premature ventricular contraction (these labels are provided in the database). 10 wave-
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forms from each of the resulting data sets were used to train the models with the number
of states M = 9 in normal cases and M = 6 in abnormal cases. The results from 5-fold
cross validation are shown in Table 2 and 3. Again we see a significant improvements for the
random effects model. In terms of classification (details not shown) our new models were
100% accurate in all experiments versus an average accuracy of 98% for segmental HMMs.

5 Conclusions

In this paper, we proposed a probabilistic model that extends segmental HMMs to include
random effects. This model allows an individual waveform to vary its shape in a constrained
manner by the prior distribution over individual waveform parameters. In our experiments,
we demonstrated that random effects segmental HMMs can achieve a significant improvement
in modeling, segmentation, and classification of waveforms. We can also take advantage
of relevant prior information about a particular problem with relatively little additional
complexity to the model. For example, we can relax the assumption of a piecewise linear
approximation and use a different form of a design matrix in the segment distribution,
such as higher order polynomial functions. If we have a prior knowledge on the shape, we
can add a prior distribution over the hyperparameters to get a fully Bayesian hierarchical
model. Finally, the missing information at the level of the random effects parameters can
lead to relatively slow convergence in the EM algorithm. Future work includes developing
and applying algorithms that can speed up the convergence rate in the EM algorithm for
the class of models proposed in this paper.
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