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Abstract

Multitask learning addresses the problem of learning related tasks that presum-
ably share some commonalities on their input-output mapping functions. Previ-
ous approaches to multitask learning usually deal with homogeneous tasks, such
as purely regression tasks, or entirely classification tasks. In this paper, we con-
sider the problem of learning multiple related tasks of predicting both continu-
ous and discrete outputs from a common set of input variables that lie in a high-
dimensional feature space. All of the tasks are related in the sense that they share
the same set of relevant input variables, but the amount of influence of each input
on different outputs may vary. We formulate this problem as a combination of lin-
ear regressions and logistic regressions, and model the joint sparsity as L1/L∞ or
L1/L2 norm of the model parameters. Among several possible applications, our
approach addresses an important open problem in genetic association mapping,
where the goal is to discover genetic markers that influence multiple correlated
traits jointly. In our experiments, we demonstrate our method in this setting, using
simulated and clinical asthma datasets, and we show that our method can effec-
tively recover the relevant inputs with respect to all of the tasks.

1 Introduction

In multitask learning, one is interested in learning a set of related models for predicting multiple
(possibly) related outputs (i.e., tasks) given a set of input variables [4]. In many applications, the
multiple tasks share a common input space, but have different functional mappings to different
output variables corresponding to different tasks. When the tasks and their corresponding models
are believed to be related, it is desirable to learn all of the models jointly rather than treating each
task as independent of each other and fitting each model separately. Such a learning strategy that
allows us to borrow information across tasks can potentially increase the predictive power of the
learned models.

Depending on the type of information shared among the tasks, a number of different algorithms have
been proposed. For example, hierarchical Bayesian models have been applied when the parameter
values themselves are thought to be similar across tasks [2, 14]. A probabilistic method for modeling
the latent structure shared across multiple tasks has been proposed [16]. For problems of which the
input lies in a high-dimensional space and the goal is to recover the shared sparsity structure across
tasks, a regularized regression method has been proposed [10].

In this paper, we consider an interesting and not uncommon scenario of multitask learning, where
the tasks are heterogeneous and bear a union support. That is, each task can be either a regression
or classification problem, with the inputs lying in a very high-dimensional feature space, but only a
small number of the input variables (i.e., predictors) are relevant to each of the output variables (i.e.,
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responses). Furthermore, we assume that all of the related tasks possibly share common relevant
predictors, but with varying amount of influence on each task.

Previous approaches for multitask learning usually consider a set of homogeneous tasks, such as re-
gressions only, or classifications only. When each of these discrete or continuous prediction tasks is
treated separately, given a high-dimensional design, the lasso method that penalizes the loss function
with an L1 norm of the parameters has been a popular approach for variable selection [13, 11], since
the L1 regularization has the property of shrinking parameters corresponding to irrelevant predictors
exactly to zero. One of the successful extensions of the standard lasso is the group lasso that uses an
L1/L2 penalty defined over predictor groups [15], instead of just the L1 penalty ubiquitously over
all predictors. Recently, a more general L1/Lq-regularized regression scheme with q > 0 has been
thoroughly investigated [17]. When the L1/Lq penalty is used in estimating the regression function
for a single predictive task, it makes use of information about the grouping of input variables, and
applies the L1 penalty over the Lq norm of the regression coefficients for each group of inputs. As
a result, variable selection can be effectively achieved on each group rather than on each individual
input variable. This type of regularization scheme can be also used against the output variables in
a single classification task with multi-way (rather than binary) prediction, where the output is ex-
panded from univariate to multivariate with dummy variables for each prediction category. In this
situation the group lasso can promote selecting the same set of relevant predictors across all of the
dummy variables (which is desirable since these dummy variables indeed correspond to only a sin-
gle multi-way output). In our multitask learning problem, when the L1/L2 penalty of group lasso is
used for multitask regression [9, 10, 1], the L2 norm is applied to the regression coefficients for each
input across all tasks, and the L1 norm is applied to these L2 norms, playing the role of selecting
common input variables relevant to one or more tasks via a sparse union support recovery. Since the
parameter estimation problem formulated with such penalty terms has a convex objective function,
many of the algorithms developed for a general convex optimization problem can be used for solving
the learning problem. For example, an interior point method and a preconditioned conjugate gra-
dient algorithm have been used to solve a large-scale L1-regularized linear regression and logistic
regression [8]. In [6, 13], a coordinate-descent method was used in solving an L1-regularized linear
regression and generalized linear models, where the soft thresholding operator gives a closed-form
solution for each coordinate in each iteration.

In this paper, we consider the more challenging, but realistic scenario of having heterogenous out-
puts, i.e., both continuous and discrete responses, in multitask learning. This means that the tasks
in question consist of both regression and classification problems. Assuming a linear regression for
continuous-valued output and a logistic regression for discrete-valued output with dummy variables
for multiple categories, an L1/Lq penalty can be used to learn both types of tasks jointly for a sparse
union support recovery. Since the L1/Lq penalty selects the same relevant inputs for all dummy out-
puts for each classification task, the desired consistency in chosen relevant inputs across the dummy
variables corresponding to the same multi-way response is automatically maintained. We consider
particular cases of L1/Lq regularizations with q = 2 and q = ∞.

Our work is primarily motivated by the problem of genetic association mapping based on genome-
wide genotype data of single nucleotide polymorphisms (SNPs), and phenotype data such as disease
status, clinical traits, and microarray data collected over a large number of individuals. The goal in
this study is to identify the SNPs (or inputs) that explain the variation in the phenotypes (or outputs),
while reducing false positives in the presence of a large number of irrelevant SNPs from the genome-
scale data. Since many clinical traits for a given disease are highly correlated, it is greatly beneficial
to combine information across multiple such related phenotypes because the inputs often involve
millions of SNPs and the association signals of causal (or relevant) SNPs tend to be very weak
when computed individually. However, statistically significant patterns can emerge when the joint
associations to multiple related traits are estimated properly. Over the recent years, researchers
started recognizing the importance of the joint analysis of multiple correlated phenotypes [5, 18],
but there has been a lack of statistical tools to systematically perform such analysis. In our previous
work [7], we developed a regularized regression method, called a graph-guided fused lasso, for
multitask regression problem that takes advantage of the graph structure over tasks to encourage a
selection of common inputs across highly correlated traits in the graph. However, this method can
only be applied to the restricted case of correlated continuous-valued outputs. In reality, the set of
clinical traits related to a disease often contains both continuous- and discrete-valued traits. As we
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demonstrate in our experiments, the L1/Lq regularization for the joint regression and classification
can successfully handle this situation.

The paper is organized as follows. In Section 2, we introduce the notation and the basic formulation
for joint regression-classification problem, and describe the L1/L∞ and L1/L2 regularized regres-
sions for heterogeneous multitask learning in this setting. In Section 3, we formulate the parameter
estimation as a convex optimization problem, and present an interior-point method for solving it.
Section 4 presents experimental results on simulated and asthma datasets. In Section 5, we conclude
with a brief discussion of future work.

2 Joint Multitask Learning of Linear Regressions and Multinomial Logistic
Regressions

Suppose that we have K tasks of learning a predictive model for the output variable, given a common
set of P input variables. In our joint regression-classification setting, we assume that the K tasks
consist of Kr tasks with continuous-valued outputs and Kc tasks with discrete-valued outputs of an
arbitrary number of categories.

For each of the Kr regression problems, we assume a linear relationship between the input vector
X of size P and the kth output Yk as follows:

Yk = β
(r)
k0 + Xβ

(r)
k + ε, k = 1, ...,Kr,

where β
(r)
k = (β(r)

k1 , . . . , β
(r)
kP )′ represents a vector of P regression coefficients for the kth regression

task, with the superscript (r) indicating that this is a parameter for regression; β
(r)
k0 represents the

intercept; and ε denotes the residual.

Let yk = (yk1, . . . , ykN )′ represent the vector of observations for the kth output over N samples;
and X represent an N × P matrix X = (x1, . . . ,xN )′ of the input shared across all of the K tasks,
where xi = (xi1, . . . , xiP )′ denotes the ith sample. Given these data, we can estimate the β

(r)
k ’s by

minimizing the sum of squared error:

Lr =
Kr∑

k=1

(yk − 1β
(r)
k0 −Xβ

(r)
k )′ · (yk − 1β

(r)
k0 −Xβ

(r)
k ), (1)

where 1 is an N -vector of 1’s.

For the tasks with discrete-valued output, we set up a multinomial (i.e., softmax) logistic regression
for each of the Kc tasks, assuming that the kth task has Mk categories:

P (Yk = m|X = x) =
exp (β(c)

k0 + xβ
(c)
km)

1 +
∑Mk−1

l=1 exp (β(c)
k0 + xβ

(c)
kl )

, for m = 1, . . . , Mk − 1,

P (Yk = Mk|X = x) =
1

1 +
∑Mk−1

l=1 exp (β(c)
k0 + xβ

(c)
kl )

, (2)

where β
(c)
km = (β(c)

km1, . . . , β
(c)
kmP )′, m = 1, . . . , (Mk − 1), is the parameter vector for the mth

category of the kth classification task, and β
(c)
k0 is the intercept.

Assuming that the measurements for the Kc output variables are collected for the same set of N
samples as in the regression tasks, we expand each output data yki for the kth task of the ith sample
into a set of Mk binary variables y′ki = (yk1i, . . . , ykMki), where each ykmi, m = 1, . . . , Mk, takes
value 1 if the ith sample for the kth classification task belongs to the mth category and value 0 oth-
erwise, and thus

∑
m ykmi = 1. Using the observations for the output variable in this representation

and the shared input data X, one can estimate the parameters β
(c)
km’s by minimizing the negative

log-likelihood given as below:

Lc = −
N∑

i=1

Kc∑

k=1

(
Mk−1∑
m=1

ykmi(β
(c)
k0 +

P∑

j=1

xijβ
(c)
kmj)− log

(
1 +

Mk−1∑
m=1

exp (β(c)
k0 +

P∑

j=1

xijβ
(c)
kmj)

))
. (3)
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In this joint regression-classification problem, we form a global objective function by combining the
two empirical loss functions in Equations (1) and (3):

L = Lr + Lc. (4)

This is equivalent to estimating the β
(r)
k ’s and β

(c)
km’s independently for each of the K tasks, assum-

ing that there are no shared patterns in the way that each of the K output variables is dependent
on the input variables. Our goal is to increase the performance of variable selection and prediction
power by allowing the sharing of information among the heterogeneous tasks.

3 Heterogeneous Multitask Learning with Joint Sparse Feature Selection

In real-world applications, often the covariates lie in a very high-dimensional space with only a
small fraction of them being involved in determining the output, and the goal is to recover the
sparse structure in the predictive model by selecting the true relevant covariates. For example, in
a genetic association mapping, often millions of genetic markers over a population of individuals
are examined to find associations with the given phenotype such as clinical traits, disease status,
or molecular phenotypes. The challenge in this type of study is to locate the true causal SNPs that
influence the phenotype. We consider the case where the related tasks share the same sparsity pattern
such that they have a common set of relevant input variables for both the regression and classification
tasks and the amount of influence of the relevant input variables on the output may vary across the
tasks. We introduce an L1/Lq regularization to the problem of the heterogeneous multitask learning
in Equation (4) as below:

L = Lr + Lc + λPq, (5)

where Pq is the group penalty to the sum of linear regression loss and logistic loss, and λ is a
regularization parameter which determines the sparsity level and could be chosen by cross validation.
We consider two extreme cases of the L1/Lq penalty for group variable selection in our problem
which are L∞ norm and L2 norm across different tasks in one dimension.

P∞ =
( P∑

j=1

max
k,m

(
|β(r)

kj |, |β(c)
kmj |

))
or P2 =

( P∑

j=1

|β(r)
j ,β

(c)
j |L2

)
, (6)

where β
(r)
j ,β

(c)
j are vector of parameters over all regression and classification tasks, respectively,

for the jth dimension. Here, the L∞ and L2 norms over the parameters across different tasks can
regulate the joint sparsity among tasks. The L1/L∞ and L1/L2 norms encourage group sparsity
in a similar way in that the β

(r)
kj ’s and β

(c)
kmj’s are set to 0 simultaneously for all of the tasks for

dimension j if the L∞ or L2 norm for that dimension is set to be 0. Similarly, if the L1 operator
selects a non-zero value for the L∞ or L2 norm of the β

(r)
kj ’s and β

(c)
kmj’s for the jth input, the

same input is considered as relevant possibly to all of the tasks, and the β
(r)
kj ’s and β

(c)
kmj’s can

have any non-zero values smaller than the maximum or satisfying the L2-norm constraints. The
L1/L∞ penalty tends to encourage the parameter values to be the same across all tasks for a given
input [17], whereas under L1/L2 penalty the values of the parameters across tasks tend to be more
different for a given input than in the L1/L∞ penalty.

4 Optimization Method

Different methods such as gradient descent, steepest descent, Newton’s method and Quasi-Newton
method can be used to solve the problem in Equation (5). Although second-order methods have a
fast convergence near the global minimum of the convex objective functions, they involve comput-
ing a Hessian matrix and inverting it, which can be infeasible in a high-dimensional setting. The
coordinate-descent method iteratively updates each element of the parameter vector one at a time,
using a closed-form update equation given all of the other elements. However, since it is a first-order
method, the speed of convergence becomes slow as the number of tasks and dimension increase. In
[8], the truncated Newton’s method that uses a preconditionor and solves the linear system instead of
inverting the Hessian matrix has been proposed as a fast optimization method for a very large-scale
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problem. The linear regression loss and logistic regression loss have different forms. The interior
method optimizes their original loss function without any transformation so that it is more intuitive
to see how the two heterogeneous tasks affect each other.

In this section, we discuss the case of the L1/L∞ penalty since the same optimization method can be
easily extended to handle the L1/L2 penalty. First, we re-write the problem of minimizing Equation
(5) with the nondifferentiable L1/L∞ penalty as

minimize Lr + Lc + λ

P∑

j=1

uj

subject to max
k,m

(
|β(r)

kj |, |β(c)
kmj |

)
< uj , for j = 1, . . . , P, k = 1, . . . , Kr + Kc. (7)

Further re-writing the constraints in the above problem, we obtain 2·P · (Kr +
∑Kc

k=1(Mk − 1))
inequality constraints as follows:

−uj < β
(r)
kj < uj , for k = 1, . . . ,Kr, j = 1, . . . , P,

−uj < β
(c)
kmj < uj , for k = 1, . . . ,Kc, j = 1, . . . , P, m = 1, . . . , Mk − 1.

Using the barrier method [3], we re-formulate the objective function in Equation (7) into an uncon-
strained problem given as

LBarrier = Lr + Lc + λ

P∑

j=1

uj +
Kr∑

k=1

P∑

j=1

(
I−(−β

(c)
kj − uj) + I−(β(c)

kj − uj)
)

+
Kc∑

k=1

Mk−1∑
m=1

P∑

j=1

I−(−β
(c)
kmj − uj) + I−(β(c)

kmj − uj),

where

I−(x) =
{

0 x ≤ 0
∞ x > 0 .

Then, we apply the log barrier function I−(f(x)) = −(1/t) log(−f(x)), where t is an additional
parameter that determines the accuracy of the approximation.

Let Θ denote the set of parameters β
(r)
k ’s and β

(c)
km’s. Given a strictly feasible Θ, t = t(0) > 0,

µ > 1, and tolerance ε > 0, we iterate the following steps until convergence.

Step 1 Compute Θ∗(t) by minimizing LBarrier, starting at Θ.
Step 2 Update: Θ := Θ∗(t)
Step 3 Stopping criterion: quit if m/t < ε where m is the number of constraint functions.
Step 4 Increase t: t := tµ

In Step 1, we use the Newton’s method to minimize LBarrier at t. In each iteration, we in-
crease t in Step 4, so that we have a more accurate approximation of I−(u) through I−(f(x)) =
−(1/t) log(−f(x)).

In Step 1, we find the direction towards the optimal solution using Newton’s method:

H

[
∆β

∆u

]
= −g,

where ∆β and ∆u are the searching directions of the model parameters and bounding parameters.
The g in the above equation is the gradient vector given as g = [g(r), g(c), g(u)]T , where g(r) has
Kr components for regression tasks, g(c) has Kc × (Mk − 1) components for classification tasks,
and H is the Hessian matrix given as:

H =




R 0 D(r)

0 L D(c)

D(r) D(c) F


 ,
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(a) (b) (c) (d)
Figure 1: The regularization path for L1/L∞-regularized methods. (a) Regression parameters esti-
mated from the heterogeneous task learning method, (b) regression parameters estimated from re-
gression tasks only, (c) logistic-regression parameters estimated from the heterogeneous task learn-
ing method, and (d) logistic-regression parameters estimated from classification tasks only. Blue
curves: irrelevant inputs; Red curves: relevant inputs.

where R and L are second derivatives of the parameters β for regression tasks in the form of R =
∇2Lr +∇2Pg|∂β(r)∂β(r) , L = ∇2Lc +∇2Pg|∂β(c)∂β(c) , D = ∇2Pg|∂β∂u and F = D(r) + D(c).
In the overall interior-point method, the process of constructing and inverting Hessian matrix is the
most time-consuming part. In order to make the algorithm scalable to a large problem, we use a
preconditionor diag(H) of the Hessian matrix H , and apply the preconditioned conjugate-gradient
algorithm to compute the searching direction.

5 Experiments

We demonstrate our methods for heterogeneous multitask learning with L1/L∞ and L1/L2 regular-
izations on simulated and asthma datasets, and compare their performances with those from solving
two types of multitask-learning problems for regressions and classifications separately.

5.1 Simulation Study

In the context of genetic association analysis, we simulate the input and output data with known
model parameters as follows. We start from the 120 haplotypes of chromosome 7 from the popu-
lation of European ancestry in HapMap data [12], and randomly mate the haplotypes to generate
genotype data for 500 individuals. We randomly select 50 SNPs across the chromosome as inputs.
In order to simulate the parameters β

(r)
k ’s and β

(c)
km’s, we assume six regression tasks and a single

classification task with five categories, and choose five common SNPs from the total of 50 SNPs as
relevant covariates across all of the tasks. We fill the non-zero entries in the regression coefficients
β

(r)
k ’s with values uniformly distributed in the interval [a, b] with 5 ≤ a, b ≤ 10, and the non-zero

entries in the logistic-regression parameters β
(c)
km’s such that the five categories are separated in the

output space. Given these inputs and the model parameters, we generate the output values, using
the noise for regression tasks distributed as N(0, σ2

sim). In the classification task, we expand the
single output into five dummy variables representing different categories that take values of 0 or 1
depending on which category each sample belongs to. We repeat this whole process of simulating
inputs and outputs to obtain 50 datasets, and report the results averaged over these datasets.

The regularization paths of the different multitask-learning methods with an L1/L∞ regularization
obtained from a single simulated dataset are shown in Figure 1. The results from learning all of the
tasks jointly are shown in Figures 1(a) and 1(c) for regression and classification tasks, respectively,
whereas the results from learning the two sets of regression and classification tasks separately are
shown in Figures 1(b) and 1(d). The red curves indicate the parameters for true relevant inputs, and
the blue curves for true irrelevant inputs. We find that when learning both types of tasks jointly, the
parameters of the irrelevant inputs are more reliably set to zero along the regularization path than
learning the two types of tasks separately.

In order to evaluate the performance of the methods, we use two criteria of sensitivity/specificity
plotted as receiver operating characteristic (ROC) curves and prediction errors on test data. To obtain
ROC curves, we estimate the parameters, sort the input-output pairs according to the magnitude of
the estimated β

(r)
kj ’s and β

(c)
kmj’s, and compare the sorted list with the list of input-output pairs with

true non-zero β
(r)
kj ’s and β

(c)
kmj’s.
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(a) (b) (c) (d)
Figure 2: ROC curves for detecting true relevant input variables when the sample size N varies. (a)
Regression tasks with N = 100, (b) classification tasks with N = 100, (c) regression tasks with
N = 200, and (d) classification tasks with N = 200. Noise level N (0,1) was used. The joint
regression-classification methods achieve nearly perfect accuracy, and their ROC curves are com-
pletely aligned with the axes.‘M’ indicates homogeneous multitask learning, and ‘HM’ heterogenous
multitask learning (This notation is the same for the following other figures).
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Figure 3: Prediction errors when the sample size N varies. (a) Regression tasks with N=100, (b)
classification tasks with N = 100, (c) regression tasks with N = 200, and (d) classification tasks
with N = 200. Noise level N (0,1) was used.

We vary the sample size to N = 100 and 200, and show the ROC curves for detecting true relevant
inputs using different methods in Figure 2. We use σsim = 1 to generate noise in the regression
tasks. Results for the regression and classification tasks with N = 100 are shown in Figure 2(a) and
(b) respectively, and similarly, the results with N = 200 in Figure 2(c) and (d). The results with
L1/L∞ penalty are shown with color blue and green to compare the homogeneous and heteroge-
neous methods. Red and yellow are results using the L1/L2 penalty. Although the performance of
learning the two types of tasks separately improves with a larger sample size, the joint estimation
performs significantly better for both sample sizes. A similar trend can be seen in the prediction
errors for the same simulated datasets in Figure 3.

In order to see how different signal-to-noise ratios affect the performance, we vary the noise level
to σ2

sim = 5 and σ2
sim = 8, and plot the ROC curves averaged over 50 datasets with a sample size

N = 300 in Figure 4. Our results show that for both of the signal-to-noise ratios, learning regression
and classification tasks jointly improves the performance significantly. The same observation can be
made from the prediction errors in Figure 5. We can see that the L1/L2 method tends to improve
the variable selection, but the tradeoff is that the prediction error will be high when the noise level
is low. While L1/L∞ has a good balance between the variable selection accuracy and prediction
error at a lower noise level, as the noise increases, the L1/L2 outperforms L1/L∞ in both variable
selection and prediction accuracy.
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Figure 4: ROC curves for detecting true relevant input variables when the noise level varies. (a)
Regression tasks with noise level N(0, 5), (b) classification tasks with noise level N(0, 5), (c) re-
gression tasks with noise level N(0, 8), and (d) classification tasks with noise level N(0, 8). Sample
size N=300 was used.
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Figure 5: Prediction errors when the noise level varies. (a) Regression tasks with noise level
N(0, 52), (b) classification tasks with noise level N(0, 52), (c) regression tasks with noise level
N(0, 82), and (d) classification tasks with noise level N(0, 82). Sample size N=300 was used.
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Figure 6: Parameters estimated from the asthma dataset for discovery of causal SNPs for the cor-
related phenotypes. (a) Heterogeneous task learning method, and (b) separate analysis of multitask
regressions and multitask classifications. The rows represent tasks, and the columns represent SNPs.

5.2 Analysis of Asthma Dataset

We apply our method to the asthma dataset with 34 SNPs in the IL4R gene of chromosome 11
and five asthma-related clinical traits collected over 613 patients. The set of traits includes four
continuous-valued traits related to lung physiology such as baseline predrug FEV1, maximum
FEV1, baseline predrug FVC, and maximum FVC as well as a single discrete-valued trait with five
categories. The goal of this analysis is to discover whether any of the SNPs (inputs) are influenc-
ing each of the asthma-related traits (outputs). We fit the joint regression-classification method with
L1/L∞ and L1/L2 regularizations, and compare the results from fitting L1/L∞ and L1/L2 regular-
ized methods only for the regression tasks or only for the classification task. We show the estimated
parameters for the joint learning with L1/L∞ penalty in Figure 6(a) and the separate learning with
L1/L∞ penalty in Figure 6(b), where the first four rows correspond to the four regression tasks,
the next four rows are parameters for the four dummy variables of the classification task, and the
columns represent SNPs. We can see that the heterogeneous multitask-learning method encourages
to find common causal SNPs for the multiclass classification task and the regression tasks.

6 Conclusions

In this paper, we proposed a method for a recovery of union support in heterogeneous multitask
learning, where the set of tasks consists of both regressions and classifications. In our experiments
with simulated and asthma datasets, we demonstrated that using L1/L2 or L1/L∞ regularizations
in the joint regression-classification problem improves the performance for identifying the input
variables that are commonly relevant to multiple tasks.

The sparse union support recovery as was presented in this paper is concerned with finding inputs
that influence at least one task. In the real-world problem of association mapping, there is a cluster-
ing structure such as co-regulated genes, and it would be interesting to discover SNPs that are causal
to at least one of the outputs within the subgroup rather than all of the outputs. In addition, SNPs in
a region of chromosome are often correlated with each other because of the non-random recombi-
nation process during inheritance, and this correlation structure, called linkage disequilibrium, has
been actively investigated. A promising future direction would be to model this complex correlation
pattern in both the input and output spaces within our framework.
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